Extra formulas in Ul

Vv x (King(x) [ Greedy(x) ) = Evil(x)
King(John)
Greedy(John)

Universal instantiation produces unnecessary instantiations:

o To check KB F Evil(John)

m We only need to instantiate { x/John}
m NoO other instantiation is needed

o We will then obtain Evil(John)
By repeated application of Modus Ponens



Extra Formulas in Ul

V x ( King(x) [J Greedy(x) ) = Evil(x)
King(John)
Vy Greedy(y)

To check KB F Evil(John)
o We only need to instantiate { x/John, y/John }

m No other instantiation iS needed
King(John) Greedy(y) ( King(x) [ Greedy(x) ) = Evil(x)
Evil(John)



Generalized Modus Ponens

LetP, P, ..P and P’ P... P~ and Q be atomic formulas whose variables are universally

quantified

Let © be a substitution such that for all i, SUBST{®©, P’ } = SUBST(6, P} where O is a

substitution

Generalized Modus
P, P, e P P, Np,
~ sueste,
Example:
King(John) Greedy(y) ( King(x) []

o Here,®={x/John, y/John}

Generalized Modus Ponens is Sound

Ponens
N\

Rule:

= q

)

Evil(x)

Evil(John)



Generalized Modus Ponens

Generalized Modus Ponens lifts Modus Ponens applied to ground terms
to quantified variables.

We looked at three algorithms for Entailment in Propositional Logic

o Forward Chaining

o Backward Chaining

o Resolution Algorithm

We will look at how these can be generalized to First-Order Logic

Before that we will look at Unification
o Substitutions that make two atomic sentences look the same



Unification

To lift the inferences, we first need to find a substitution that produces identical
formulas:
o UNIFY(P,Q) returns © such that SUBST(©, P) = SUBTS(©, Q)

m If such a e exists

Examples:
o  UNIFY(Knows(John, x), Knows(John, Jane))
m {x/Jane}

o UNIFY(Knows(John, x), Knows(y, Bill))
m {X/Bill, y/John}

o  UNIFY(Knows(John, x), Knows(y, Mother(y)))
m { y/John, x/Mother(John) }

o UNIFY(Knows(John, x), Knows(x, Elizabeth))
m Failure



Unification

e UNIFY(Knows(John, x), Knows(x, Elizabeth))
m Failure

e Here, the problem was that the same variable was used in both sentences
o Solution : Use different quantified variables in each statement

e UNIFY(Knows(John, x), Knows(z, Elizabeth))
m { z/John, x/Elizabeth }



Unification

UNIFY( Knows(John, x), Knows(y, z) )

What is the unifier here?
o { x/John,y/John, z/John}
o {y/John,z/x}

{y/ John, z/ x} is More General than { x/John, y/John, z/John }
o Because we can obtain{ x/John, y/John, z/John } by one more step { x/John}

Most General Unifier: All other substitutions can be obtained from this
o Always exists if the pair is unifiable
o Unique up to renaming and substitution



Algorithm to obtain Most General Unifier

° FindMGU( P, Q) : Takes two atomic formulas and returns MGU ® VarUnify(x,u, ©)
o If P and Q are atoms from Different predicates then RETURN Failure o If x = u then Return ©
© Else P=R(tt, ...t ) and Q=R(t,t, ...t ) o  Elself x occursinu then RETURN Failure
m  Return FindSub ([t t, ...t | [t t, ...t ],{}) o Elself{x/t}is already in @ then
RETURN FindSub(t, u, ©)
e FindSub(u,v,0) o Else Return (O U {x/u})

o If uand v are lists of size 1
] If u and v are ground terms
e If u#vthen RETURN Failure e  Some examples to try out:
e Ifu=vthen Return © °© P flg@) PAfz). x)

m Ifuis avariable then call VarUnify(u, v, ©) 2 Z(@,’égi?é)f%'(éz&,x),y)
e If @ is Failure then Return Failure o Q,G(AA)), QG(x,x)y)
° Rewrite u and v with the new 6 o Older(Father(y),y), Older(Father(x),Jerry)
] If v is a variable then call VarUnify(v, u, © ) ° Knows(Father(y).y). Knows(x.x)
e [f ©is Failure then Return Failure
e  Rewrite u and v with the new © e  Checking whether x occurs in u makes the entire
m Ifu=ftt, ..t )andv=g(t t,...1t )then RETURN Failure algorithm quadratic
m Ifu=ftt, ..t )andv=Ff(tt, ..t )then e  There are clever ways to have a linear time
RETURN FindSub ([t,t, ...t ] [t V', ..t ], o) algorithm to find MGU

o  Foreveryi=1to lul
m O=FindSub(t, t',0)
] If © is Failure then Return Failure
[ Rewrite u and v with the new 6
o Return ©



Storage and Retreival of KB

Store(P) stores P inthe KB [ More general than TELL ]
Fetch(P) returns all unifiers with some sentence in the KB
[More general than ASK and ASKVars]

Store the KB as a single List
o Leads to inefficient unification

How can we store the KB so that Feth(P) can be answered efficiently?

Predicate Indexing : Stores each predicate in a different bucket
o  Works well if there are many predicates, each with few clauses
o Ifthere are few predicates but each has a lot of clauses :

m Leads to inefficient unification

® Knows (x)y) and Knows(x, Richard) should scan the entire bucket

o  One solution : Hash table with second argument for each bucket
m  Knows(Richard, y) will need Hash table for first argument

Typically stored with multiple index keys (Like indexing in Database records)



Storage and Retreival of KB

When we add something new to KB can we store all possible queries that
unifies with it as a subsumption lattice.

Employs(x,y) Employs(x,y)
Employs(x,Richard) Employs(IBM,y) Employs(x,John) Employs(x,x) Employs(John,y)
Employs(IBM,Richard) Employs(John,John)

The child node is obtained by a single substitution of its parent

The highest common descendant is the most general unifier

For n arguments, the lattice will have O(2") values in the lattice
o Good for predicates with small number of arguments

Should we store the subsumption lattice or not is an engineering decision



Forward Chaining in First Order Logic

e First-Order definite Clause has exactly one positive literal

o Can be written as an implication where antecedent is a conjunction
of positive literals and consequent is a positive literal
m  King(x) [J Greedy(x)) = Evil(x)
m King(John) is also a definite clause

o No existential variables are allowed
m All variables that occur are implicitly assumed to be universally
quantified



Forward Chaining in First Order Logic : Example

The law says that it is a crime for an American to sell weapons to hostile nations. The
country Nono, an enemy of America, has some missiles, and all of its missiles were
sold to it by Colonel West, who is American.

American(x) A Weapon(y) A\ Sells(x, y, z) A Hostile(z) = Criminal(x)
Owns(Nono, M1)

Missile(M1)

Owns(Nono, x) A Missile(x)= Sells(West, x, Nono)

Missile(x) = Weapon(x)

Enemy(x, America) = Hostile(x)

American(West)

Enemy(Nono, America)

This KB is in Datalog
o Definite clauses with no function symbols



Forward Chaining in First Order Logic

( American(x) A Weapon(y) A

Sells(x, y, z) A Hostile(z) ) =
Criminal(x)

Owns(Nono, M1)

Missile(M1)

( Owns(Nono, x) A Missile(x) ) =

Sells(West, x, Nono)

Missile(x) = Weapon(x)

Enemy(x, America) = Hostile(x)

American(West)

Enemy(Nono, America)

With {x/M1} add Sells(West,M1,Nono)
With {x/M1} add Weapon{M1}

With {x/Nono} add Hostile(Nono)
With {x/West, y/M1, z/Nono) add
Criminal(West)



Forward Chaining in First Order Logic

Everyone likes Desserts. Everyone
who lives inside IITM likes ice
creams. All ice-creams are desserts.
Everyone lives inside IITM and
Anantha IS one of them.

Dessert(x) =  Likes(y, x)

Lives(x, ITM) =  Likes(x, Ice-cream)
Dessert(lce-cream)

Lives(x, ITM)

Lives(Anantha, IITM)

With { } add Likes(x, lce-cream)
With {x/lce-cream}

add Likes(y, lce-cream) (?)

In first step, with {x/Anantha} we
get Likes(Anantha, Ice-cream)



Forward Chaining in First Order Logic

function FOL-FC-ASK(KB, o) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
a, the query, an atomic sentence

while rrue do
new<{} // The set of new sentences inferred on each iteration
for each rule in KB do
(p1A...A pn = q)< STANDARDIZE-VARIABLES(rule)
for each 6 such that SUBST(A,p1 A ... A p,) = SUBST(0,p| A ... A p))
for some p,...,p) in KB
q' < SUBST(#, q)
if ¢’ does not unify with some sentence already in KB or new then
add ¢’ to new
¢+ UNIFY(¢, @)
if ¢ is not failure then return ¢
if new = { } then return false
add new to KB

e The algorithm is Sound

O

Repeated application of
Generalized Modus Ponens



Forward Chaining in First Order Logic

function FOL-FC-ASK(KB, o) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
a, the query, an atomic sentence

while zrue do
new<{} // The set of new sentences inferred on each iteration
for each rule in KB do
(P1A...A pn = q)< STANDARDIZE-VARIABLES(rule)
for each 6 such that SUBST(A,p; A ... A p,) = SUBST(0,p| A ... A p))
for some p,...,p), in KB
q' < SUBST(#, q)
if ¢’ does not unify with some sentence already in KB or new then
add ¢’ to new
¢+ UNIFY(q, @)
if ¢ is not failure then return ¢
if new = { } then return false
add new to KB

e Above algorithm is Complete
o If there are no functions then
then we have a bounded number
of ground facts
m Hence the number of
iterations is bounded

e If we also have function symbols:
o No instances can go on an
infinite loop
o Example:
NatNum(O)
Natnum(x) = NatNum(S(x))
e Algorithm Keeps on Adding
{ Natnum(0O), Natnum(S(0)),
Natnum(S(S(0)))....... }



Forward Chaining in First Order Logic

function FOL-FC-ASK(KB, o) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
a, the query, an atomic sentence

while true do
new<{} // The set of new sentences inferred on each iteration
for each rule in KB do
(P1A...\ pn = q)< STANDARDIZE-VARIABLES(rule)
for each 6 such that SUBST(A,p; A ... A p,) =SUBST(0,p| A ... A p})
for some p,...,p), in KB
q < SUBST(#,q)
if ¢’ does not unify with some sentence already in KB or new then
add ¢’ to new
¢+ UNIFY(q, @)
if ¢ is not failure then return ¢
if new = { } then return false
add new to KB

e This algorithm is not efficient

o Matching rules against
facts takes time

o Algorithm rechecks
every rule in every
iteration

o Generates facts not

relevant to the goal



Forward Chaining in First Order Logic

Matching rules against facts takes time

o  Missile(x) A Owns(Nono,x) =
Sells(West,x,Nono)
m Should we first find all facts that match
Missle(x) or Owns(Nono, Xx)
m Conjunct Ordering problem:
e NP hard to pick optimal ordering
e Minimum Remaining value
Heuristics : Pick whichever has
lesser number of remaining facts

Inner loop is already NP-hard
o Data complexity is polynomial
(only count ground facts, not size of the rule)
o Has connections to Constraint Satisfaction
Problem (CSP)
m Pattern matching can be encoded as a
CSP

function FOL-FC-ASK(KB, o) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
a, the query, an atomic sentence

while rrue do
new<{} // The set of new sentences inferred on each iteration
for each rule in KB do
(P1A...A pn = q)< STANDARDIZE-VARIABLES(rule)
for each 6 such that SUBST(A,p; A ... A p,) = SUBST(0,p| A ... A p))
for some p,...,p) in KB
q' < SUBST(#, q)
if ¢’ does not unify with some sentence already in KB or new then
add ¢’ to new
¢+ UNIFY(¢, @)
if ¢ is not failure then return ¢
if new = { } then return false
add new to KB



Forward Chaining in First Order Logic

e Algorithm rechecks every rule
in every iteration

function FOL-FC-ASK(KB, o) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
«, the query, an atomic sentence

o How to ensure we do not while rrue do

Lo . new<{} // The set of new sentences inferred on each iteration
keep deriving things that for each rule in KB do
(p1A...A pn = q)< STANDARDIZE-VARIABLES(rule)
are already |nferred? for each 6 such that SUBST(0,p1 A ... A p,) = SUBST(6,p| A ... A p))

for some p,...,p) in KB
q < SUBST(6,q)
if ¢’ does not unify with some sentence already in KB or new then

e Every new fact derived at step t pvs ok A0
if ¢ is not failure then return ¢
must use at least one fact if mew = { } then return fulse
. . add new to KB
derived in step t-1

o Incremental Forward Chaining



Forward Chaining in First Order Logic

e (Generates facts not relevant to the goal

o Use Backward Chaining
o Restrict Forward Chaining to a
subset of Rules
o Deductive Databases
m Like Relational DBs but

Forward Chaining is built-in.
m (American(x) A Weapon(y) A
Sells(x, y, z) A Hostile(z) ) =
Criminal(x)
m ( Magic(x) A American(x) A Weapon(y) A
Sells(x, y, z) A Hostile(z) ) =
Criminal(x)
m [o check for Criminal(West),

add Magic(West) to the KB

function FOL-FC-ASK(KB, ) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
«, the query, an atomic sentence

while frue do
new<{} // The set of new sentences inferred on each iteration
for each rule in KB do
(p1A...A pn = q)< STANDARDIZE-VARIABLES(rule)
for each 6 such that SUBST(0,p1 A ... A p,) =SUBST(6,p| A ... A p})
for some p,...,p) in KB
q < SUBST(6,q)
if ¢’ does not unify with some sentence already in KB or new then
add ¢’ to new
¢+ UNIFY(¢, @)
if ¢ is not failure then return ¢
if new = { } then return false
add new to KB



Backward Chaining in First Order Logic : Example

( American(x) A Weapon(y) A\
Sells(x, y, z) A Hostile(z) ) =

| Criminal(West)l
Criminal(x)
Owns(Nono, M1)
MlSS'Ie(I\/”) |American(West)| | Weapon(y) | ISells(West,Ml,z) I Hostile(Nono)
( Owns(Nono, x) A Missile(x) ) 0 (ziNono}

= Sells(West,x,Nono)
. . | Missile(y) HMissile(Ml) | IOwns(Nono,Ml)l |Enemy(Nono,America)|
Missile(x) = Weapon(x) My} 0 0 0

Enemy(x, America) = Hostile(x)
American(West)

Enemy(Nono, America) Should be careful about infinite loops !




Logic Programming

There are Programming Language to specify KB of definite clauses and make
inferences
Also called Theorem provers

o Most common : Prolog, Isabelle, Coq, Lean, ...

Syntax of Prolog:
criminal (X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
© king(john).
0 1likes(john, alice).

o Variables start with capital letters

o  Queries start with ?-
m ?-evil (john).

o Has builtin arithmetic predicates
m tallerThan(X,Y) :- height (X,A), height(Y,B), A > B.



Prolog Backend

e OccurCheck is omitted from the Prolog Unification Algorithm
o Onus is on the programmer

e Uses depth-first backward-chaining without checking for infinite loops
o Fast when used properly
o Might get into infinite loop even if the logic is correct



Infinite Loops in Prolog

® path(X,z) :- 1link(X,Z). A B C
e path(X,7) :- path(X,Y), link(Y,2). o—0—0
e link(a,b).
¢ link(b,c)
® 7?-path(a,c). path (a,c)
lrnki(a, ) path(a,Y) link (b, c)
st {}
Ieryle (fas Y0)

{Y/b}



path(X,Z) :- path(X,Y), link(Y,Z).
path(X,z) :- 1link(X,Z).

link(a,b)

link (b, c)

Infinite Loops in Prolog

Prolog is an incomplete theorem prover.

A B

&

o—0—0

path (a, c)

path(a, Y)

B Rl ey)

path(a,Y’)

link (Y’ ,Y)

/




Forward and Backward Chaining computation in Prolog

® path(X,z) :- 1link(X,Z).
® path(X,z) :- path((X,Y), link(Y,2Z2).

Ay

e 7?-path(al,j4).
o Backward Chaining takes 877 inferences
o Forward Chaining takes 62 inferences
[ ] It is like Dynamic programming

@ Tabled logic programming tries to avoid exponential blowup
in the backtracking




Database semantics in Prolog

e Prolog uses Database semantics
o Every constant and ground term refers to distinct object

o Only sentences that are true are those entailed by the KB
o There are no other domain elements except for the constants

mentioned
e Weaker than First Order Logic

e If you can model your KB in Prolog (THEN DO IT!)
o No need to use the First Order Logic theorem prover



Constraint Logic Programming

Till now we assumed that the domain is finite

What if we want to find solutions over infinite domains?
o Natural Numbers

Example:
O triangle(X,Y,72) :- X>0, Y>0, z>0, X+¥Y>Z, Y+Z>X, X+7Z>Y.
o ASKVars(KB, triangle(3,4,z) )

Prolog cannot do this because there are infinitely many objects
o ASK(KB, triangle(3,4,5) ) is OK.



Constraint Logic Programming

e Constraint Logic Program outputs constraints on the variables

e Example:
O triangle(X,Y,z) :—- X>0, Y>0, z>0, X+¥Y>Z, Y+Z>X, X+Z>Y.
o ASKVars(KB, triangle(3,4,z) )

o  Output would be:
m 1<z <7/

e Prolog Type Inferences are special case of Constraint Logic Program
o Where output will always be some equality



Resolution in First Order Logic

e We first need to write the formulas in CNF
o Variables occurring in the CNF should be universally quantified

e Example: Everyone who loves all animals is loved by someone
o Vx(VyAnimal(y) = Loves(x,y)) = (3y Loves(y,x))

o [Eliminate =] Vx~( Vy-Animal(y) V Loves(x,y) ) V (3 y Loves(y,x) )
o [Move ~inside] V x ( 3y Animal(y) A “Loves(x,y) ) V (T y Loves(y,x) )
o [Standardize variables] Vx ( 3y Animal(y) A “Loves(x,y) ) V (3 z Loves(z,x) )

o [Skolemize Existential Variables]
V x ( Animal(F(x)) A =Loves(x,F(x)) ) V Loves(G(x),x) )

o [Drop universal quantifiers] (Animal(F(x)) A "Loves(x, F(x)) ) V Loves(G(x),x) )
o [Distribute A overV ]
(Animal(F(x)) V Loves(G(x), x) ) A ( "Loves(x, F(x)) V Loves(G(x),x) )



Resolution Rule for First Order Logic

OV LN N AN AN Ao N oy N e N o N o N

oo (Resolution Rule)

SUBST(O, (v .4 Vv L,V L Nwm NV m NV m N . m )

1 i-1 i+1 k 1 j-1 j+1

Where, e = Unify(/ , m)

Example:
Animal(F(x)) V Loves(G(x), x) “Loves(u,yv) V Feeds(uy)

Animal(F(x)) V Feeds( G(x), x)
Where, {u/G(x), vix '} = Unify(Loves(G(x), x) , ~Loves(uyv))

This rule is called Binary Resolution Rule since it resolves two literals



Resolution Rule for First Order Logic

Binary Resolution Rule (BRR) itself is not complete for First Order Logic
o We also need Factoring
Factoring Rule (FR): Removing Unifiable literals
- (Factoring Rule) Where ¢ can be unified with 7
2
Example:
P(x) v P(G(u))
P(G(u))
BRR + FR is complete for First Order Logic

o KB Fa iff (KBA ~a) is unsatisfiable iff empty clause can be derived for (KB A 7a) using BRR+FR



Example Resolution Proofs

( American(x) A Weapon(y) A\
Sells(x, y, z) A Hostile(z) ) =
Criminal(x)

OW ns ( N ono M 1) | ~American(x) v ~Weapon(y) v ~Sells(x,y,z) v—Hostile(z) Criminal(x) | —~Criminal(West) |
’

M | S S | I e ( M 1) | American(West) | —American(West) v —Weapon(y) v —Sells(West.y,z) v —Hostile(z)
. . | —Missile(x) v Weapon(x) | —Weapon(y) v —Sells(Wesl,y,z) V —Hoslile(z) |
( Owns(Nono, x) A\ Missile(x) ) | || |
Missile(M ) —Missile(y)V —Sells(West,y,z) v “Hostile(z)
= Sells(West,x,Nono) \|

|ﬁMissile(x) V-Owns(Nono,x) V Sells(West,x, Nono) l —Sells(West,M\,z)V —Hoslile(z) |

Missile(x) = Weapon(x)
Enemy(x, America) = Hostile(x)
American(West)

Enemy(Nono, America)

| Missile(M,) I —Missile(M) v —~Owns(Nono,M,) vV —Hostile(Nono) |

lOwnsﬂVono, M) | —Owns(Nono, M) —Hostile(Nono)

| —Enemy(x,America) v Hostile(x) | —Hostile(Nono) |

| Enemy(Nono, America) }E‘nemy(l\’ono, America) |



