
Extra formulas in UI

● ∀x  ( King(x) ⴷ Greedy(x) ) ⇒ Evil(x)
● King(John)
● Greedy(John)

● Universal instantiation produces unnecessary instantiations:
○ To check KB ⊨ Evil(John)

■ We only need to instantiate  { x/John } 
■ No other instantiation is needed

○ We will then obtain Evil(John) 
By repeated application of Modus Ponens



Extra Formulas in UI

● ∀x  ( King(x) ⴷ Greedy(x) ) ⇒ Evil(x)
● King(John)
● ∀y  Greedy(y)

● To check KB ⊨ Evil(John)
○ We only need to instantiate  { x/John, y/John } 

■ No other instantiation is needed

● King(John)   Greedy(y)    ( King(x) ⴷ Greedy(x) ) ⇒ Evil(x)   
—----------------------------------------------------------------------------------------------------
                                      Evil(John)



Generalized Modus Ponens
● Let P1  P2  … Pn   and P’1 P’2…. P’n     and  Q   be atomic formulas whose variables are universally 

quantified
● Let 𝞡 be a substitution such that for all i,  SUBST{𝞡, P’i } = SUBST{𝞡, Pi} where 𝞡 is a 

substitution

● Generalized Modus Ponens Rule:
  p’1   p’2   ...... p’n      p1  Λp2 Λ … pn ⇒ q
—------------------------------------------------------------

SUBST(𝞡, q )

● Example:

       King(John)   Greedy(y)    ( King(x) ⴷ Greedy(x) ) ⇒ Evil(x)   
—----------------------------------------------------------------------------------------------------
                                      Evil(John)

○ Here, 𝞡 = { x / John,  y / John }

● Generalized Modus Ponens is Sound



Generalized Modus Ponens

● Generalized Modus Ponens lifts Modus Ponens applied to ground terms 
to quantified variables.

● We looked at three algorithms for Entailment in Propositional Logic
○ Forward Chaining
○ Backward Chaining
○ Resolution Algorithm

● We will look at how these can be generalized to First-Order Logic

● Before that we will look at Unification
○ Substitutions that make two atomic sentences look the same



Unification

● To lift the inferences, we first need to find a substitution that produces identical 
formulas:
○ UNIFY( P,Q)  returns 𝞡 such that SUBST(𝞡, P)  = SUBTS(𝞡, Q)

■ If such a 𝞡 exists

● Examples:
○ UNIFY(Knows(John, x), Knows(John, Jane)) 

■  { x/Jane }

○ UNIFY(Knows(John, x), Knows(y, Bill)) 
■ {x/Bill, y/John }

○ UNIFY(Knows(John, x), Knows(y, Mother(y)))  
■ {  y/John, x/Mother(John) } 

○ UNIFY(Knows(John, x), Knows(x, Elizabeth))
■ Failure



Unification

●  UNIFY( Knows(John, x), Knows(x, Elizabeth) )
■ Failure

● Here, the problem was that the same variable was used in both sentences
○ Solution : Use different quantified variables in each statement

●  UNIFY(Knows(John, x), Knows(z, Elizabeth))
■ {  z/John, x/Elizabeth }



Unification

●  UNIFY( Knows(John, x), Knows(y, z) )

● What is the unifier here?
○ {  x/John, y/John, z/John }
○ { y/ John, z/ x }

● { y/ John, z/ x }  is More General than {  x/John, y/John, z/John }
○ Because we can obtain {  x/John, y/John, z/John } by one more step  { x/John }

● Most General Unifier:  All other substitutions can be obtained from this
○ Always exists if the pair is unifiable
○ Unique up to renaming and substitution



Algorithm to obtain Most General Unifier
●  FindMGU( P, Q )   :  Takes two atomic formulas and returns MGU

○ If P and Q are atoms from Different predicates then RETURN Failure
○ Else  P = R( t1 t2 ......tn  )  and Q = R( t’1 t’2 ......t’n  )

■ Return FindSub ([t1 t2 ......tn], [t’1 t’2 ......t’n] , { } )

● FindSub ( u, v, 𝞡 )
○ If u and v are lists of size 1

■ If u and v are ground terms 
● If  u ≠ v then RETURN Failure
● If u = v then Return 𝞡

■ If u is a variable then call VarUnify(u, v, 𝞡 )
● If 𝞡 is Failure then Return Failure
● Rewrite u and v with the new 𝞡

■ If v is a variable then call VarUnify(v, u, 𝞡 )
● If 𝞡 is Failure then Return Failure
● Rewrite u and v with the new 𝞡

■ If u = f( t1 t2 ......tn  )  and v = g( t’1 t’2 ......t’m  ) then RETURN Failure
■ If u = f( t1 t2 ......tn  )  and v = f( t’1 t’2 ......t’n  ) then

RETURN FindSub ([t1 t2 ......tn], [t’1 t’2 ......t’n] , 𝞡 )
○ For every i = 1 to |u|

■ 𝞡 = FindSub (ti  ,  t’i, 𝞡 )
■ If 𝞡 is Failure then Return Failure
■ Rewrite u and v with the new 𝞡

○ Return 𝞡

●  VarUnify( x, u, 𝞡 )   :  
○ If x = u then Return 𝞡
○ Else If x occurs in u  then RETURN Failure
○ Else If { x / t} is already in 𝞡  then 

RETURN FindSub(t, u, 𝞡 )
○  Else Return ( 𝞡 U { x / u } )

● Some examples to try out:
○ P(x, f(g(z)))  P(f(z), x)
○ P(A,A,B) ,  P(x,y,z)
○ Q(y,G(A,B)), Q(G(x,x),y)
○ Q(y,G(A,A)), Q(G(x,x),y)
○ Older(Father(y),y), Older(Father(x),Jerry)
○ Knows(Father(y),y),  Knows(x,x)

● Checking whether x occurs in u makes the entire 
algorithm quadratic

● There are clever ways to have a linear time 
algorithm to find MGU



Storage and Retreival of KB
● Store(P)  stores P in the KB     [ More general than TELL ]
● Fetch(P)  returns all unifiers with some sentence in the KB   

[More general than ASK and ASKVars]

● Store the KB as a single List
○ Leads to inefficient unification

● How can we store the KB so that Feth(P) can be answered efficiently? 

● Predicate Indexing : Stores each predicate in a different bucket
○ Works well if there are many predicates, each with few clauses
○ If there are few predicates but each has a lot of clauses :

■ Leads to inefficient unification 
● Knows (x,y)  and Knows(x, Richard) should scan the entire bucket

○ One solution : Hash table with second argument for each bucket
■ Knows(Richard, y)  will need Hash table for first argument

● Typically stored with multiple index keys (Like indexing in Database records)



Storage and Retreival of KB

● When we add something new to KB can we store all possible queries that 
unifies with it as a subsumption lattice.

● The child node is obtained by a single substitution of its parent
● The highest common descendant is the most general unifier
● For n arguments, the lattice will have O(2n) values in the lattice

○ Good for predicates with small number of arguments

● Should we store the subsumption lattice or not is an engineering decision



Forward Chaining in First Order Logic

● First-Order definite Clause has exactly one positive literal

○ Can be written as an implication where antecedent is a conjunction 
of positive literals and consequent is a positive literal
■  King(x) ⴷ Greedy(x) ) ⇒ Evil(x)
■ King(John)  is also a definite clause

○ No existential variables are allowed
■ All variables that occur are implicitly assumed to be universally 

quantified



Forward Chaining in First Order Logic : Example

● The law says that it is a crime for an American to sell weapons to hostile nations. The 
country Nono, an enemy of America, has some missiles, and all of its missiles were 
sold to it by Colonel West, who is American.

● American(x) Λ Weapon(y) Λ Sells(x, y, z) Λ Hostile(z) ⇒ Criminal(x)
● Owns(Nono, M1)
● Missile(M1)
● Owns(Nono, x) Λ Missile(x)⇒ Sells(West, x, Nono)
● Missile(x) ⇒ Weapon(x)
● Enemy(x, America) ⇒ Hostile(x)
● American(West)
● Enemy(Nono, America)

● This KB is in Datalog
○ Definite clauses with no function symbols



Forward Chaining in First Order Logic

● ( American(x) Λ Weapon(y) Λ 
  Sells(x, y, z) Λ Hostile(z)   )   ⇒     

Criminal(x)
● Owns(Nono, M1)
● Missile(M1)

● ( Owns(Nono, x) Λ Missile(x) ) ⇒  
Sells(West, x, Nono)

● Missile(x) ⇒ Weapon(x)
● Enemy(x, America) ⇒ Hostile(x)
● American(West)
● Enemy(Nono, America)

● With {x/M1} add Sells(West,M1,Nono)
● With {x/M1} add Weapon{M1}
● With {x/Nono} add Hostile(Nono)
● With {x/West, y/M1, z/Nono) add 

Criminal(West)



Forward Chaining in First Order Logic

● Everyone likes Desserts. Everyone 
who lives inside IITM likes ice 
creams. All ice-creams are desserts. 
Everyone lives inside IITM and 
Anantha is one of them.

● Dessert(x)    ⇒     Likes(y, x)
● Lives(x, IITM)  ⇒     Likes(x, Ice-cream)
● Dessert(Ice-cream)
● Lives(x, IITM)
● Lives(Anantha, IITM)

● With {  } add Likes(x, Ice-cream)
● With {x/Ice-cream} 

 add Likes(y, Ice-cream)    (?)
● In first step, with {x/Anantha}  we 

get Likes(Anantha, Ice-cream)



Forward Chaining in First Order Logic

● The algorithm is Sound
○ Repeated application of 

Generalized Modus Ponens



Forward Chaining in First Order Logic

● Above algorithm is Complete
○ If there are no functions then 

then we have a bounded number 
of ground facts

■ Hence the number of 
iterations is bounded

● If we also have function symbols:
○ No instances can go on an 

infinite loop
○ Example: 

 NatNum(0)
 Natnum(x)  ⇒ NatNum(S(x))

● Algorithm Keeps on Adding 
{ Natnum(0), Natnum(S(0)), 
  Natnum(S(S(0))).......             }



Forward Chaining in First Order Logic

● This algorithm is not efficient
○ Matching rules against 

facts takes time

○ Algorithm rechecks 
every rule in every 
iteration

○ Generates facts not 
relevant to the goal



Forward Chaining in First Order Logic

● Matching rules against facts takes time

○ Missile(x) Λ Owns(Nono,x) ⇒ 
Sells(West,x,Nono)

■ Should we first find all facts that match 
Missle(x) or Owns(Nono, x)

■ Conjunct Ordering problem : 
● NP hard to pick optimal ordering
● Minimum Remaining value 

Heuristics : Pick whichever has 
lesser number of remaining facts

● Inner loop is already NP-hard
○ Data complexity is polynomial 

(only count ground facts, not size of the rule)
○ Has connections to Constraint Satisfaction 

Problem (CSP)
■ Pattern matching can be encoded as a 

CSP



Forward Chaining in First Order Logic

● Algorithm rechecks every rule 
in every iteration

○ How to ensure we do not 
keep deriving things that 
are already inferred?

● Every new fact derived at step t 
must use at least one fact 
derived in step t-1

○ Incremental Forward Chaining



Forward Chaining in First Order Logic

● Generates facts not relevant to the goal

○ Use Backward Chaining
○ Restrict Forward Chaining to a 

subset of Rules
○ Deductive Databases

■ Like Relational DBs but 
Forward Chaining is built-in.

■ ( American(x) Λ Weapon(y) Λ 
  Sells(x, y, z) Λ Hostile(z)   )   ⇒     

Criminal(x)
■ ( Magic(x) Λ American(x) Λ Weapon(y) Λ 

Sells(x, y, z) Λ Hostile(z)   )   ⇒     
Criminal(x)

■ To check for Criminal(West), 
add Magic(West) to the KB



Backward Chaining in First Order Logic : Example

● ( American(x) Λ Weapon(y) Λ 
Sells(x, y, z) Λ Hostile(z)   )   ⇒ 
Criminal(x)

● Owns(Nono, M1)
● Missile(M1)
● ( Owns(Nono, x) Λ Missile(x)  )  

  ⇒ Sells(West,x,Nono)
● Missile(x) ⇒ Weapon(x)
● Enemy(x, America) ⇒ Hostile(x)
● American(West)
● Enemy(Nono, America) Should be careful about infinite loops !



Logic Programming

● There are Programming Language to specify KB of definite clauses and make 
inferences

● Also called Theorem provers
○ Most common : Prolog, Isabelle, Coq, Lean, …

● Syntax of Prolog:
○ criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
○ king(john).
○ likes(john, alice).

○ Variables start with capital letters

○ Queries start with ?-
■ ?-evil(john).

○ Has builtin arithmetic predicates
■ tallerThan(X,Y) :- height(X,A), height(Y,B), A > B.



Prolog Backend

● OccurCheck is omitted from the Prolog Unification Algorithm
○ Onus is on the programmer

● Uses depth-first backward-chaining without checking for infinite loops
○ Fast when used properly
○ Might get into infinite loop even if the logic is correct



Infinite Loops in Prolog

● path(X,Z) :- link(X,Z).
● path(X,Z) :- path(X,Y), link(Y,Z).
● link(a,b).
● link(b,c).
● ?-path(a,c).



Infinite Loops in Prolog

● Prolog is an incomplete theorem prover.

● path(X,Z) :- path(X,Y), link(Y,Z).
● path(X,Z) :- link(X,Z).
● link(a,b).
● link(b,c).
● ?-path(a,c).



Forward and Backward Chaining computation in Prolog

● ?-path(a1,j4).
○ Backward Chaining takes 877 inferences
○ Forward Chaining takes 62 inferences

■ It is like Dynamic programming

○ Tabled logic programming tries to avoid exponential blowup 
in the backtracking

● path(X,Z) :- link(X,Z).
● path(X,Z) :- path(X,Y), link(Y,Z).



Database semantics in Prolog

● Prolog uses Database semantics
○ Every constant and ground term refers to distinct object
○ Only sentences that are true are those entailed by the KB
○ There are no other domain elements except for the constants 

mentioned

● Weaker than First Order Logic

● If you can model your KB in Prolog (THEN DO IT! )
○ No need to use the First Order Logic theorem prover



Constraint Logic Programming

● Till now we assumed that the domain is finite

● What if we want to find solutions over infinite domains?
○ Natural Numbers

● Example:
○ triangle(X,Y,Z) :- X>0, Y>0, Z>0, X+Y>Z, Y+Z>X, X+Z>Y.
○ ASKVars(KB, triangle(3,4,z) )

● Prolog cannot do this because there are infinitely many objects
○ ASK(KB, triangle(3,4,5) )  is OK.



Constraint Logic Programming

● Constraint Logic Program outputs constraints on the variables

● Example:
○ triangle(X,Y,Z) :- X>0, Y>0, Z>0, X+Y>Z, Y+Z>X, X+Z>Y.
○ ASKVars(KB, triangle(3,4,z) )

○ Output would be:
■ 1 < z  < 7

● Prolog Type Inferences are special case of Constraint Logic Program
○ Where output will always be some equality



Resolution in First Order Logic

● We first need to write the formulas in CNF
○ Variables occurring in the CNF should be universally quantified

● Example: Everyone who loves all animals is loved by someone 
○ ∀x (∀y Animal(y) ⇒ Loves(x,y) ) ⇒ (∃y Loves(y,x) )
○ [Eliminate ⇒] ∀x ¬ ( ∀y ¬Animal(y) V Loves(x,y) ) V (∃y Loves(y,x) )
○ [Move ¬ inside] ∀x ( ∃y Animal(y) Λ ¬Loves(x,y) ) V (∃y Loves(y,x) )
○ [Standardize variables] ∀x ( ∃y Animal(y) Λ ¬Loves(x,y) ) V (∃z Loves(z,x) )

○ [Skolemize Existential Variables]
∀x ( Animal(F(x)) Λ ¬Loves(x,F(x)) ) V  Loves(G(x),x) )

○ [Drop universal quantifiers] (Animal(F(x)) Λ ¬Loves(x, F(x)) ) V  Loves(G(x),x) )
○ [Distribute  Λ over V ]

 (Animal(F(x)) V  Loves(G(x), x) ) Λ ( ¬Loves(x, F(x)) V  Loves(G(x),x) )



Resolution Rule for First Order Logic

●  𝓁1 V  𝓁2 V  … 𝓁i-1 V  𝓁i  V  𝓁i+1 V  … 𝓁k 𝓂1 V  𝓂2 V  … 𝓂j-1 V  𝓂j  V  𝓂j+1 V  …𝓂n
—----------------------------------------------------------------------------------------------- (Resolution Rule)

SUBST( 𝞡,  𝓁1 V  … 𝓁i-1 V  𝓁i+1 V  … 𝓁k V 𝓂1 V  … 𝓂j-1 V  𝓂j+1 V  … 𝓂n )

● Where, 𝞡 = Unify(𝓁i , 𝓂j) 

● Example:
Animal(F(x)) V  Loves(G(x), x)         ¬Loves(u,v) V  Feeds(u,v) 

—----------------------------------------------------------------------------------------
Animal(F(x))  V  Feeds( G(x), x) 

Where, {u/G(x),  v/x } = Unify(Loves(G(x), x) , ¬Loves(u,v)) 

● This rule is called Binary Resolution Rule since it resolves two literals



Resolution Rule for First Order Logic

●  Binary Resolution Rule (BRR) itself is not complete for First Order Logic
○ We also need Factoring

● Factoring Rule (FR):  Removing Unifiable literals
 𝓁1 V  𝓁2 

—------------------------------------------ (Factoring Rule)  Where 𝓁1 can be unified with  𝓁2 
𝓁2 

● Example:
P(x) V P(G(u))

 —------------------------------
    P(G(u))

● BRR + FR is  complete for First Order Logic
○ KB ⊨ 𝛂  iff (KB Λ ¬𝛂) is unsatisfiable  iff  empty clause can be derived for (KB Λ ¬𝛂)  using BRR+FR



Example Resolution Proofs

● ( American(x) Λ Weapon(y) Λ 
Sells(x, y, z) Λ Hostile(z)   )   ⇒ 
Criminal(x)

● Owns(Nono, M1)
● Missile(M1)
● ( Owns(Nono, x) Λ Missile(x)  )

   ⇒ Sells(West,x,Nono)
● Missile(x) ⇒ Weapon(x)
● Enemy(x, America) ⇒ Hostile(x)
● American(West)
● Enemy(Nono, America)


