Categories and Objects

- Organizing objects into Categories is fundamental to Knowledge Representation.
- Interactions take place at object level but the reasoning takes place at the category level.
 - A shopper goes to a shop to buy a basketball
 (as supposed to buying the 3rd basketball on the 4th shelf)
- Agent infers the object using percepts then uses the category information to make prediction about the object
 - If Agent detects yellow peel, yellow soft pulp and a hard shell inside then Agent infers that the object is Mango
 - Using its category information, it infers that it can used to make milkshake

Categories and Objects

- There are two ways to represent categories and objects in First Order Logic:
 - Make Categories as unary predicates
 - BasketBall(B1)
 - Make the category also as an object (Reification)
 - Member(B1, BasketBalls) also written as B1 ∈ BasketBalls
 - SubClass(BasketBalls, Balls) also written as BasketBalls ⊆ Balls
- Categories are organized through inheritances
 - Subclasses organize categories into taxonomic hierarchy
 - Examples:
 - Library Dewey Decimal system
 - Biological Taxonomy: Kingdom, Phylum, Class, Order, Family, Genus, Species

Categories in First order logic

- Many natural properties of Categories can be stated in First Order Logic
 - An object is a member of a category
 - B1 ≡ BasketBalls
 - A category is a subclass of another category
 - BasketBalls ⊆ Balls
 - Members of a class can be recognized by some properties
 - Orange(x) \land Spherical(x) \land Diameter = 9.5" \land x \in Balls \Rightarrow x \in BasketBalls
 - All members of a category have some common property
 - Dogs ∈ DomesticatedSpecies
 - Here DomesticatedSpecies is a category of categories

Categories in First order logic

- Sometimes we also want to say two categories are disjoint / exhaustive / partition:
 - Disjoint({Animals, Vegatables, Basketballs})
 - Disjoint(s) : \forall c1, c2 c1 \in s \land c2 \in s \land c1 \neq c2 \Rightarrow Intersection(c1, c2) = {}
 - ExhaustiveDecomposition({CSE, AE, EE,...}, BTechStudents)
 - ExhaustiveDecomposition (s,c): \forall i i ∈ c \Leftrightarrow \exists c2 c2 ∈ s \land i ∈ c2
 - Partition ({BTech, DualDegree, MTech, MS, PhD}, Students)
 - Partition (s,c) : Disjoint(s) \wedge ExhaustiveDecomposition(s,c)
- Some categories can also have necessary and sufficient conditions for membership
 - $x \in Bachelors \Leftrightarrow Unmarried(x) \land x \in Adults \land x \in Males$

Representing Physical Composition

- Nose is part of Face
- Chennai is part of Tamil Nadu
- Tamil Nadu is part of India
- India is part of Asia

- Objects can be grouped into Partof hierarchies
 - Partof(x,y) is reflexive and transitive
- Category of composite objects can be characterized using PartOf
 - Archipelago is a collection of at least 2 islands
 - $x \in Archipelago \Leftrightarrow \exists 11 12 11 \neq 12 \land PartOf(11, x) \land PartOf(12, x) \land 11 \in island \land 12 \in island$

$$\land \forall I \text{ PartOf}(I, x) \Rightarrow I \in \text{island}$$

Representing Measurements

- Objects have height / mass / cost ...
- Same length has different measurements (inches / cm / ..)
 - Each unit can be a function
 - \circ length(I1) = Inches(1.5) length(I1) = centimeters(3.8)
- Examples of simple measurements:
 - Diameter(BasketBall1) = Inches(9.5)
 - MRP(BasketBall1) = INR(1200)
 - \circ d ∈ days \Rightarrow (duration(d) = hours(24))
- Inches(0) and Centimeters(0) refer to the same object, but different from seconds(0)

Representing Measurements

- Not clear how to represent measurement that do not have agreed scale of values
 - Tasty / difficult / scared
- Does not make sense to impose numerical scale
 - Does it mean we cannot do any inference about it?
 - We are generally interested in the relative ordering, not the absolute value
 - As long as we can define > we can make inferences
 - Fried food is tastier than salad
 - \forall f1,f2 f1 \in FriedFood \land f2 \in salad \Rightarrow Tastyness(f1) > Tastyness(f2)
 - Tasty things are unhealthy
 - \forall f1,f2 Tastyness(f1) > Tastyness(f2) \Rightarrow HealthScore(f1) < healthscore(f2)
- Such inferences in Al is called qualitative physics
 - Reasoning about physical systems without looking at detailed equations and numerical simulations

Representing Objects

- Real world consists of primitive objects
 - Composite objects are built from primitive objects
 - Part of is useful in many ontologies
- There are objects that cannot be broken into primitive objects
 - Such objects are called Stuff
- If I have a banana and butter in front of me:
 - I can say I see 1 banana (Banana is a thing)
 - Can I say I see 1 butter? (Butter is stuff)
- There are ontologies to deal with this distinction

Representing Objects

- For stuff, we can have a category
 - \forall p, b b \in Butter \land PartOf(p, b) \Rightarrow p \in Butter
 - \circ \forall b b ∈ Butter \Rightarrow MeltingPoint(b) = centigrade(30)

- PoundofButter is not stuff, it is a thing
- SalterButter is stuff and is a subcategory of Butter
- Intrinsic properties like density, melting point etc can be attributed to stuff
- Extrinsic properties like weight, length etc can be attributed to things

Events

- We had fluents in the Wumpus world like HaveArrow^t
 - Here time is discrete
- How to model continuous time?
 - Like Water filling a bucket:
 - Initial state : Empty bucket
 Final state : Full bucket
 - Transitions?
- How to model simultaneous events?
 - The boy was brushing his teeth while waiting for the bucket to fill
- To handle this, we have Event calculus

Event Calculus

- Objects in event calculus are Events, Fluents and Time points
 - At(Alice, Chennai) is a fluent that states Alice is in Chennai
- Alice flew from Chennal to Mumbai
 - Option 1: Make this a predicate (of appropriate arity)
 - Option 2:
 - E1 \subseteq Flyings \land Flyer(E1, Alice) \land Origin(E1, Chennai) \land Destination(E1, Mumbai)
 - Since events are also objects, we can add more properties about events:
 - The flight was delayed by 1 hour: delayed(E1) = hour(1)
- Continuous time:
 - T(At(Alice, Chennai), t1, t2)
 T is special: It takes a predicate as input
 - Happens(E1, t1, t2)
- What all such predicates do we need to model time/events?
 - Starts / terminates / ...

Event Calculus

Predicates in Event Calculus (1999, Shanahan)

```
T(f, t1, t2)
                             Fluent f is true for all times between t1 and t2
0
    Happens(e, t1, t2)
                             Event e starts at time t1 and ends at time t2
    Initiates(e, f, t)
                             Event e causes Fluent f to become true at time t
0
    Terminates(e, f, t)
                             Event e causes Fluent f to become false at time t
0
    Initiated(f, t1, t2)
                             Fluent f become(s) true at some point between t1 and t2
0
    Terminated(f, t1, t2)
                             Fluent f become(s) false at some point between t1 and t2
0
    t1 < t2
                             Time point t1 occurs before t2
0
```

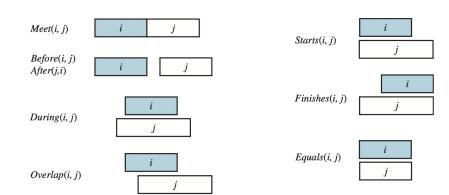
Example:

○ E1 \subseteq Flyings \land Flyer(E1, Alice) \land Origin(E1, Chennai) \land Destination(E1, Mumbai) \land Happens(E, t1, t2) \Rightarrow Terminates(E, At(Alice, Chennai), t1) \land Initiates(E, At(Alice, Mumbai), t2)

Event Calculus

- There is a distinguished start event
 - Describes initial state and fluents that are true/false at the beginning
 - We can then describe what fluent are true/false at what points of time

Example:


- Suppose an event e happens between t1 and t3. At time t2 somewhere between t1 and t3, the
 event e changes the value of the fluent f by initiating it. Then at time t4 in the future (after t3), if
 no other event has changed the value of f then the fluent f remains True between t2 and t4.
 - Happens(e, t1, t3) Λ Initiates(e, f, t2) Λ ¬Terminated(f, t2, t4) Λ t1 ≤ t2 ≤ t3 ≤ t4 \Rightarrow T (f, t2, t4)
- Event calculus can be extended to include:
 - Simultaneous events (two children playing see-saw)
 - Exogenous event (wind moving an object)
 - Continuous event (rise of tides)
 - Non-deterministic events (pressing a button on coffee vending machine)

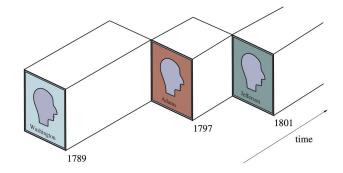
Time

- Event calculus allows us to talk about time points and time intervals
 - Time points are special time intervals with 0 duration
 - Partition({Moments, ExtendedIntervals}, Intervals)
 i ∈ Moments ⇔ Duration(i)=Seconds(0)
- How to indicate absolute time?
 - Start from an arbitrary absolute time point as 0
 - Jaunary 1, 1900 (GMT) has time 0
 - o Begin and End functions pick the earliest and latest moments in an interval
 - Time function gives a point on the time scale
- Examples:
 - Time(Begin(AD1900)) = Seconds(0)
 - Time(Begin(AD2001)) = Seconds(3187324800)
 - Time(End(AD2001)) = Seconds(3218860800)
 - Interval(i) \Rightarrow Duration(i) = (Time(End(i)) Time(Begin(i)))
 - Duration(AD2001) = Seconds(31536000)
 - Time(Begin(AD2001)) = Date(0, 0, 0, 1, Jan, 2001)
 - Date(0, 20, 21, 24, 1, 1995) = Seconds(3000000000)

Time Intervals

- Two events can interact in the following 7 ways (Allen, 1983)
- Meet(i, j) ⇔ End(i)=Begin(j)
- Before(i, j) ⇔ End(i) < Begin(j)
- After(j, i) ⇔ Before(i, j)
- During(i, j) ⇔ Begin(j) < Begin(i) < End(i) < End(j)
- Overlap(i, j) ⇔ Begin(i) < Begin(j) < End(i) < End(j)
 - Not symmetric : i should begin before j
- Starts(i, j) ⇔ Begin(i) = Begin(j)
- Finishes(i, j) ⇔ End(i) = End(j)
- Equals(i, j) \Leftrightarrow Begin(i) = Begin(j) \land End(i)=End(j)

Reign of Elizabeth II immediately followed that of George VI, and the Reign of Elvis overlapped with the 1950s


Meets(ReignOf (GeorgeVI), ReignOf (ElizabethII)) Overlap(Fifties, ReignOf (Elvis)) Begin(Fifties) = Begin(AD1950) End(Fifties) = End(AD1959)

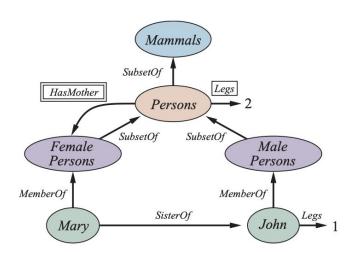
Fluents and Objects

- Objects can be viewed as generalized events
 - A chunk of space-time
 - USA is an event that started in 1776 with 13 states
 - Population(USA)

will

be

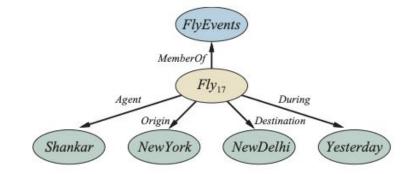
because


- Can President(USA) be a term if time is involved?
 - President(USA) can denote a single object that consists of different people along with time intervals.
 - T (Equals(President(USA), GeorgeWashington), Begin(AD1790), End(AD1790))
 - Here we use Equals instead of =
 - = cannot have predicate as an argument
 - Also, GeorgeWashington and President(USA) are not interpreted as same objects

Reasoning Systems with Category

- Two commonly used systems of organizing and reasoning about categories:
 - Semantic Networks
 - Description

Logics


- Semantic Networks: Graph representation of categories, objects and relationships among them
 - HasMother is a property
 - How many legs does Mary have?
 - How many legs does John have?
 - Reasoning is through graph traversal
 - Simple and efficient

Semantic Networks

- Multiple inheritance can lead to contradicting inferences
 - We will discuss this later
- How to assert Shankar Flew from NewYork to New Delhi Yesterday ?

Strictly less expressive that first order logic
 In particular no existential quantifiers

- There are extensions
 - At the cost of simplicity

Description Logics

 $Concept \rightarrow Thing \mid ConceptName$ **Evolved** from semantic networks And(Concept,...)**All**(RoleName, Concept) Mainly used to do the following inferences **AtLeast**(*Integer*, *RoleName*) **AtMost**(*Integer*, *RoleName*) Subumption: A category is a subclass of another **Fills**(*RoleName*, *IndividualName*, . . .) category SameAs(Path, Path) Classification: An object belongs to a category Consistency: An object satisfies the property of **OneOf**(IndividualName,...) $Path \rightarrow [RoleName,...]$ the category to which it belongs $ConceptName \rightarrow Adult \mid Female \mid Male \mid ...$ Bachelor = And(Unmarried, Adult, Male) $RoleName \rightarrow Spouse \mid Daughter \mid Son \mid \dots$ **FemaleCSEProfs** AND(Faculty, All Men with: at least 3 sons, who are all unemployed, all of whom are married to doctors daughters all of whom professors Math **Physics** most in of are AND(Male, Atleast(3,Son), Daughter), Atmost(2, All(Son, AND(Unemployed, Married, All(Spouse, Doctor)),

All(Daughter, AND(Professor, Fills(Department, Physics, Math))))

Description Logics

- Inference can be done in Polynomial time
- Description Logic does not have negation and only has limited disjunctions (in Fills and OneOf)

```
Concept 
ightarrow Thing | ConceptName | And(Concept,...) | All(RoleName, Concept) | AtLeast(Integer, RoleName) | AtMost(Integer, RoleName) | Fills(RoleName, IndividualName,...) | SameAs(Path, Path) | OneOf(IndividualName,...) | Path 
ightarrow [RoleName,...] | ConceptName 
ightarrow Adult | Female | Male | ... | RoleName 
ightarrow Spouse | Daughter | Son | ... |
```

Mental models

0	They	do		not	ha	ave	beliefs	abo	out	their	own	belie	efs (I	ntrospection)
Scer	nario 1	•												
0	Alice	: What is	the so	luare ro	oot of 4	100?								
0		I do not I		•										
0	Alice					:				Thin	k			harder.
	Bob	realizes	that	if h	ie pu	its more	more	thought	, he	should	be able	e to figu	re out	the answer
Scer	nario 2	2:												
0	Alice	: Is Anan	tha's d	lesktop	in his	office swi	tched on	of switch	ed off?					
0		I do not I												
0	Alice					:				Thin	k			harder.
	Bob	should	be	able	to	say, the	ere is	no wa	y he	can ge	et the	answer	by think	king harder
Scer	nario 2	<u>2:</u>												
0	Alice	: Is Anan	tha's d	lesktop	in his	office swi	tched on	of switch	ed off?					
0	Bob:	I do not I	know	·										
0	Alice				:			Does			Anar	ntha		know?
	Bob					:				Yes,				obviously!
	Bob		ould		be	able		to	reasor		bout	Ananth	,	knowledge.

• For such reasoning, the agents should be able to model the knowledge of other agents

Knowledge

Knows : can be a predicate

 Referential Transperancy: Property depends only on the object that the term is referring to, not the syntax of the term itself

```
\circ If 2+2 = 4 and 4 < 5 then 2+2 < 5
```

- When modelling Knowledge of agents, we want Referential Opacity
 - Modal Logic can do this

Modal Logic

•		dal op A	perators t knows		entenc P	es as inp		represe	nted	as		K _A F
•	Syn	ıtax	is same	as	First	Order	Logic	with	addit	ional	operator	K _A F
•	Exa	mple	(with pro	oposit	ions) :	Alice is	s in Cl	nennai	and B	ob is	in Bangal	ore.
	0	Alice	knows that	it is rain	ing in Cl K _{Alic}						(RainingInChe	ennai
	0	Bob d	loes not kno ¬ K _{Bol}			raining in (nChennai)		¬K₁	Bob	(¬	RainingInChe	ennai
	0	Bob k	nows that i	t is eith		g in Chenn IgInChenna		V	¬		RainingInChe	ennai
	0	Bob k	nows that A			ther it is ra iningInChe	_		Alice (¬	Rainir	ngInChennai)	,

Modal Logic

- Models in Modal Logic consists of Possible worlds
 - There is an indistinguishability relationship between the worlds for a given agent based on whether the agent can distinguish between them (also called accessibility relation).
 - \circ K_AP is true at a world w if P is true in all worlds that are accessible by A from w.
- PropertiesofKnowledge:

- Above properties + Axioms of Propositional Logic is a sound and complete axiom system for Propositional Epistemic Logic
- Logical Omniscience : Agent knows all consequences of the axioms

$$\alpha \Rightarrow K_{\Delta} \alpha$$

- True for ideal agents
- o Real agents are assumed to have resource bounded inference power

Modal Logic

- Knowledge over predicates.
 - Can describe subtle properties
- Example:
 - Alice knows that someone killed Mary
 - \blacksquare K_{Alice} ($\exists x \text{ Killed}(x, Mary)$)
 - Alice knows who killed Mary
 - \blacksquare $\exists x K_{Alice} (Killed(x, Mary))$
- There are other Modal Logics variants:
 - Temporal Logic: To reason about Time Always / Until / Sometime in Future / ...
 - Doxastic Logic : Belief (need not be true)
 - Deontic Logic: It is obligatory for adults to play taxes / Request / Permission
 - Term Modal Logic : There exists an Agent who knows alpha

Reasoning about exceptions

- In a semantic network, a subcategory can override a property
- Humans believe in default reasoning unless we are presented with an opposing evidence.
 - o If my friend says I have parked my car outside, I will always assume that it has 4 wheels.
 - o If I see someone limping, I will always assume that his leg is hurt.
- These are examples of nonmonotonic situations
 - Set of inferences does not monotonically grow as new evidence is presented
- There are two logics to deal with such scenarios:
 - Circumscription
 - Default logic

Circumscription

•	Circumscribed P	redicates are f	alse for every object exce	pt for those specified othe	erwise
	Bird(x)	\wedge	¬Abnormal₄(x)	⇒	Flies(x

- Here Abnormal, is a circumscribed predicate
 - It is assumed to be false for every object unless specified otherwise
 - \circ We can add Penguin(x) \Rightarrow Abnormal₁(x)
- Handling multiple inheritance:

0

- Let Alice is a scientist (and hence believes Bigbang created the universe)
 She is also a believer of god (and hence believes God created the universe and not bigbang).
- Scientist(Alice) Λ Theist(Alice)
- Scientist(x) $\land \neg Abnormal_2(x) \Rightarrow BelievesBigBang(x)$
- Theist(x) $\land \neg Abnormal_3(x) \Rightarrow \neg BelievesBigBang(x)$
- If Abnormal₃(Alice) is in the knowledgebase, then we can conclude that she believes in god but also in Bigbang
- But if we have both Abnormal₂(Alice) and Abnormal₃(Alice) ?
 - Inferencing algorithm (rightly) concludes that it cannot say either.

Default Logic

- Example 1:
 - Bird(x): Flies(x) / Flies(x)
 - o If Bird(x) is true and if Flies(x) is consistent with the KB then Flies(x) is concluded by default
- General Rule looks like: P: J₁...J_n / C
 - \circ If P holds and J_1 J_n is consistent with the KB then conclude C
- Example 2:
 - Scientist(x): BelievesBigBang(x) / BelievesBigBang(x)
 - Theist(x): ¬ BelievesBigBang(x) / ¬ BelievesBigBang(x)
 - Scientist(Alice) Λ Theist(Alice)
- In default logic, we conclude a property only if it holds in every maximal consistent extension of the initial set S

Nonmonotonic Logic

- Nonmonotonic logics are non-modular
 - Every exception needs to be handled in its own way
 - There is no common way to handle all rules at a time
- Should we have default for every rule?
 - O Which rules should have default and which should not?

- My car brakes are always OK
 - Given no other information, the probability that my car's brakes are OK is high enough for me to drive without checking them
 - We can use probability / threshold also to deal with defaults

Belief Revision

- Default is the default status.
 - But when new evidence is presented, some birds do not fly anymore
 - o So we need to remove agent's beliefs and all its consequences
- This process is called Belief Revision
 - RETRACT(KB, P)
 - Should remove P and also all inferences that were added to KB that were inferred using P
- Example:
 - KB = { P \Rightarrow Q, Q, P} (where Q was an inference) then RECTACT(KB, P) = { P \Rightarrow Q }
 - P KB = { P \Rightarrow Q, Q, P, R \Rightarrow Q, R} (where Q was an inference) then RECTACT(KB, P) = { P \Rightarrow Q, R, Q }
- Truth Maintenance Systems are designed to do such revisions efficiently.

Truth Maintenance Systems

- Keep track of the order in which the sentences are added to $KB : P_1 ... P_n$
 - \circ To remove P_i first revert to the state just before P_i was added. Then add $P_{i+1}...P_n$
 - Costly if revision happens frequently
- Justification based Truth Maintenance: Keep track of justification for the inferences.
 - KB = { P \Rightarrow Q, P } then Justification(Q) = { {P \Rightarrow Q, P} }
 - KB = { P \Rightarrow Q, P, R \Rightarrow Q, R} then ustification(Q) = { {P \Rightarrow Q, P}, {R \Rightarrow Q, R} }
 - RETRACT(P) will remove every Justification set that contains P.
 - Time for RETRACT(P) is proportional to the number of sentences that were inferred using P.
 - When an inferred sentence is removed from the KB it is marked as out (but its justification is remembered)
 - If later one of the justification set is added back then we do not have to recompute the entire
- Assumption based Truth Maintenance: For each sentence keeps track of which assumptions would make the sentence true.

Inference in the age of LLMs

- LLMs are great but
 - They are wrong in many cases
 - We do not know when it is right and when it is wrong
- Can we make LLMs use some Knowledge base?
 - Inferencing takes a lot of time
 - What should be stored in the knowledge base?
- Current research
 - Inference guided LLMs: Get an output from LLM, ask how it arrived at the conclusion.
 Then use a logical system to verify that the out is correct
 - It is easy to check a proof than to come up with a proof.
 - Guide it by saying at this step the reasoning is incorrect, if there is some flaw.
 - When an LLM says "This is how I arrived at a conclusion" did it really do it or just saying the most likely thing that you will accept?