Artificial Intelligence CS6380

Knowledge and Reasoning

Knowledge

- Humans know things
 - Common sense
 - Make deductions from things we already know (Knowledge Base)
 - Alice knows that if she pushes the egg off the table, it will fall and break.
 - How can we make an artificially intelligent agent do similar inferences?
- Why should an Agent do such inferences?
 - Are search methods not enough to achieve its goals?
 - Real world deployment needs to keep making such inferences on the fly
 - Too many variables
 - A fire rescue agent should inference when/how to move at each step
 - To develop a Al that can do more generic jobs
 - As supposed to doing one particular job (like the search based agents)

Knowledge

- Examples of things that search based agents cannot do:
 - o In search based agent for travelling salesman:
 - Can the distance between two cities be negative?
 - Does the triangle inequality hold?
 - o In search based agent for chess:
 - Can I give a check in the next three moves?
 - Am I in a better position than my opponent?
 - o Deducing that some action is safe to perform before actually performing it.
- If there are some fixed set of things that the agents needs to know, it can probably be encoded in search
- But if the questions also occur on the fly then search will not be able to handle it

Knowledge

- How to empower the agents to make inferences?
- Machine Learning Approach:
 - Show the agents lot of examples and hope that the agents somehow learn them
 - O For a new setting, it will answer based on what it has learnt from the examples.
- Advantages:
 - Works well in many applications
 - Especially when large amount of data is available
- Drawbacks:
 - Answers are prone to error
 - Needs lots of data to train
 - Does not do well if the question is not part of its training
- We will look at a way to make error-free inferences that does not depend on training.

Knowledge-Based Agents

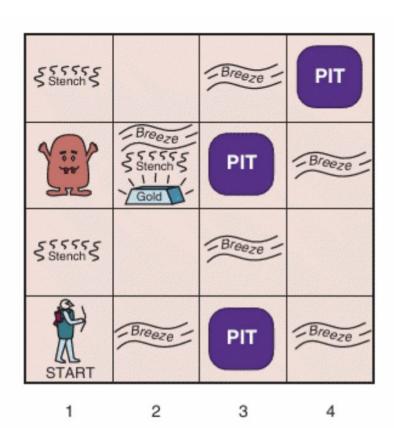
- Knowledge Based Agents use a process of reasoning over an internal representation of Knowledge to decide what actions to take.
- A Knowledge Base is a set of sentences
 - Represents some assumption / observations about the world
 - Expressed in Knowledge Representation Language
- The agent can add new sentences to the knowledge base : TELL
- The agent can query if something follows from the knowledge base: ASK
- Both ASK and TELL might involve INFERENCES
 - Inference : Deriving new sentences from the old ones

Knowledge-Based Agents

- At every time step t Agent does the following:
 - TELLS the Knowledge Base what it perceives (precept)
 - ASKS the Knowledge Base what action it should perform
 - o TELLS the Knowledge Base which action was performed
 - Knowledge Base will initially contain some background knowledge
- Knowledge level abstraction does not depend on the implementation
 - Example : Automated Taxi
 - If the taxi is going from IIT Madras to Pondicherry via ECR then it knows that it should pass through Mahabalipuram
 - This is independent of how the geographic details are stored (linked list / vector / pixels ...)

Building the Knowledge Based Agent : Declarative v/s Procedural

- Designer starts with empty knowledge base and keep TELLing what agent needs to know
 - Declarative


 Approach
- Encode desired behaviour directly as program code
 - Procedural
 Approach
- Typically a combination of these techniques are used in implementations

Example: The Wumpus world

3

2

- You are in a cave which is an 4 X 4 grid
- In one of the grid point there is Wumpus
 - He eats whoever enters that grid point
 - Cells adjacent to Wumpus Stinks (not diagonals)
 - Agent can shoot the Wumpus but she has only 1 arrow
- Some grid points have pits
 - Anyone who enters will fall into the pit and is stuck there forever
 - Cells adjacent to pits have Breeze (not diagonals)
- There is gold in one of these points
- Goal: Grab the gold and climb out of the cave without falling into pit or being eaten by the Wumpus

The Wumpus world: As PEAS model

Performance Measure :

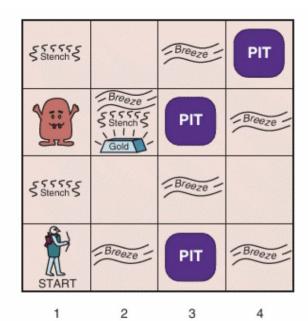
- +1000 for climbing out of the cave with gold
- +500 for climbing out of the cave without gold
- **-1000** for falling into pit
- **-1000** for being eaten by Wumpus
- -1 for every action taken
- o -10 for using the arrow 3
- O Game ends when agent dies or climbs out of the cave

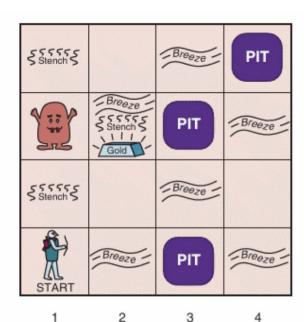
Environment:

- 4X4 grid with walls at the border
- Agent always starts at [1,1]
- Location of Wumpus and Gold are chosen at random (except at [1,1])
- Every point other than the start can be a pit with probability 0.2

The Wumpus world: As PEAS model

Actuators:

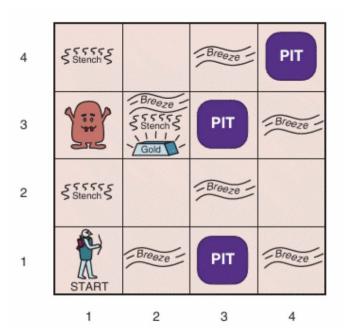

- Agent can move FORWARD, TURNLEFT, TURNRIGHT
 - If an agent tries to move forward and bumps into a wall then the agent does not move
 - Agent dies if she enters a square containing a pit or Live
 Wumpus (entering a square with dead Wumpus is ok)
- GRAB can be used to pick gold if the agent and gold are in the same
- SHOOT can be used to fire an arrow in a straight line in the direction that the agent is facing
 - The Arrow continues till it hits (and kills) Wumpus or hits the wall
 - Agent has only one arrow, so only the first shoot action has
 an
 effect


The Wumpus world: As PEAS model

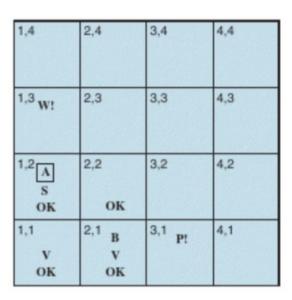
- Sensors: Agent has 5 sensors
 - In the squares directly adjacent to Wumpus, Agent perceives
 STENCH
 - In the squares directly adjacent to Pit, Agent perceives BREEZE
 - In the square that contains gold, Agent perceives GLITTER
 - o If the agent walks into wall, she will perceive BUMP
 - When Wumpus dies, it emits a SCREAM that can be perceived anywhere in the cave
- Percept is given to the agent in the form of a list at every step:
 - Example : Stench, Breeze, Glitter, No Bump, No Scream would be [STENCH, BREEZE, GLITTER, None, None]

3

- Deterministic, Discrete, Static, Single-Agent
- Sequential
 - o Reward may come only after many actions are taken
- Agent does not know the full configuration of the system (location of Wumpus, gold, pits..)
- Overcoming the ignorance seems to require logical 1 reasoning



1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

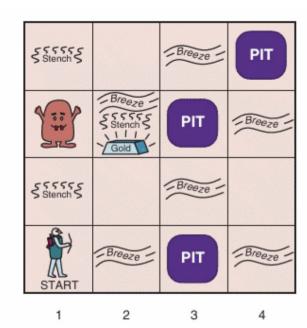

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
S	= Stench
v	= Visited
W	= Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- At [1,1] agent receives [None, None, None, None, None]
- From this Agent concludes that [1,2] and [2,1] are OK ([1,1] is also OK)
- Cautious agent will only move to OK squares
- Say agent moves to [2,1] where agent perceives [None, Breeze, None, None, None]
- So there must be a pit in [2,2] or [3,1] or both (but not [1,1])

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

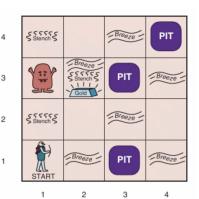
- Cautious agent at this point will turn back and visit [1,2]
- At [1,2] agent receives [Stench, None, None, None, None]
 - This means Wumpus is there in one of [1,1] or [2,2] or [1,3]
- Wumpus cannot be in [1,1]
- Can Wumpus be in [2,2]?
 - o (No)
- So Agent can deduce that Wumpus is in [1,3]
- Also, [2,2] is OK (otherwise there would be breeze), so [3,1] has a pit
- This inference needs to combine knowledge gained in different times and different places


1,4	2,4	3,4	4,4
1,3 w!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

- Agent now moves to the next unexplored OK square [2,2] where she receives [None, None, None, None, None]
- So [2,3] and [3,2] are OK
- Agent say moves to [2,3]
- Agent detects GLITTER, so agent grabs gold, returns to [1,1] and climbs out of cave
 - Agent can climb out only from [1,1]
 - So agent should find a path from current position to [1,1]

- Agent makes conclusions at every step from the available
- At each step the conclusions are guaranteed to be correct if the available information is correct

 How can the agent represent these information and draw conclusions?


Knowledge Base

•	Wha	at to	store	e in	the	Knowledge	Base?
•	Eng	lish senter	nces?				
	0	"If there is b	reeze in a squar	e then there is	a pit in at least or	ne of the adjacent so	quares"
	0	Not	machine		friendly	/	ambiguous
•	Mat	hematical	<mark>Logic</mark> gives ι	ınambiguoı	us way to repr	esent information	on
	0	Meaning is o	clear from the sta	atement			
	0	Amenable	to	make	deductions	and	inferences

- Most commonly used Logical Formalisms:
 - Propositional Logic
 - First Order Logic / Predicate Logic
 - Modal Logic : Epistemic / Temporal ...

Logic

- Syntax of the Logic : Specifies what are all the well formed formulas
 - \circ Example: In arithmetic, x+y=4 is well-formed but x += is not well-formed
 - \circ In propositional logic : p \wedge q is well-formed but pq \wedge is not well-formed
- Semantics defines the truth of a well-formed formula in each possible world.
 - Example x+y=4 is TRUE in a world where x=3 and y=1 (and x=y=2 etc.), but false in x=1 and y=1
 - o In propositional Logic: $p \land q$ is true in a world where both p and q are TRUE but FALSE in all the worlds where at least one of the two is FALSE
- A Model is Mathematical Abstraction of the real world
 - A well formed formula is evaluated to TRUE/FALSE in a given model
 - \circ If a formula α and a Model m, if α evaluates to TRL m satisfies α or m is a model of α
 - \circ M(α) = { m | m satisfies α } is the set of all models in

