
Propositional Logic
● Boolean Logic - Can be used to do deductions in settings like the Wumpus world

● Syntax has following components:
○ Atomic Sentences / Atomic Formulas / Propositions : Can be TRUE/FALSE

■ Example :  There is Breeze in [1,2]   (Denoted by B1,2) 
Agent is facing east  (Denoted by FacingEast)

■ An Atomic Sentence can be TRUE / FALSE (some change over time, some do not)

○ Negation : There is NO Stench in [2,2] ( ¬ S2,2)

○ Conjunction: There is NO stench in [3,2] AND Agent is Facing West     (  ¬S3,2Λ FacingWest   )

○ Disjunction : There is Stench in [2,3] OR Wumpus is NOT there in [3,3]    ( S2,3 V ¬ W3,3  )

○ Implication : IF there is NO stench in [2,3] THEN Wumpus is NOT there in [3,3]  ( ¬S2,3 ⇒¬ W3,3  )

○ Bi-Implication Agent is Facing east IFF Agent is NOT Facing West (FacingEast ⇔ ¬ FacingWest)



Propositional Logic : Syntax



Propositional Logic : Semantics
● Tells us how to Assign TRUE / FALSE to sentences

● Model specifies TRUE / FALSE for Atomic sentences
○ Example : If P,Q, R are the Atomic sentences them M = { P = TRUE, Q = TRUE, R = FALSE }
○ Models are just mathematical objects (Might or might not correspond to a real world instance)

■ Example : M = { W2,2 = TRUE, S3,2 = FALSE ….}  is a model but does not correspond to any 
Wumpus world



Modelling Wumpus World in Propositional Logic
● First consider immutable aspects:

○ Those that do not change over time

● For every location [x,y], let us have the following atomic sentences:
○ Px,y is TRUE if there is a Pit in [x,y]
○ Wx,y is TRUE if there is a Wumpus in [x,y]  (either dead or alive)
○ Bx,y is TRUE if it is Breezy in [x,y]
○ Sx,y is TRUE if there is Stench in [x,y]
○ Lx,y is TRUE if the Agent is located in [x,y]    

( Lx,yis not immutable, we will consider such atomic statements this later )

● Some sentences in our Knowledge Base:
○ There is no Pit in [1,1]        R1    :  ¬ P1,1
○ A square is Breezy iff at least one of its neighbours has a Pit:

R2    :   B1,1 ⇔ ( P2,2 V  P2,1)   R3    :   B2,1 ⇔ ( P1,1 V  P2,2V  P3,1  )

○  R1  , R2  and R3  are TRUE in all Wumpus Worlds
○ Sentences TRUE in the given Wumpus World (known through percepts)

R4    :   ¬B1,1   R5    :   B2,1 



Inferences in Wumpus World in Propositional Logic
● Knowledge base (KB) has the following information:

○ R1    :  ¬P1,1    R2    :   B1,1 ⇔ ( P1,2 V  P2,1)
R3    :   B2,1 ⇔ ( P1,1 V  P2,2V  P3,1  )
R4    :   ¬B1,1  R5    :   B2,1 

● Can we infer ¬P1,2   from the KB ?  

● Can we infer ¬P2,2   from the KB ?  

● EXERCISE:
Design an Algorithm that 
takes a KB and a 
sentence 𝜶 and checks 
whether KB  ⊨ 𝜶 using the 
model checking method. 



Inferences in Propositional Logic via Model Checking
● We have a Sound and Complete Algorithm using the Model Checking 

Method
○ Sound : All Inferences are correct
○ Complete: Every KB  ⊨ 𝜶  can be inferred.

● But takes a lot of time
○ If there are n Atomic sentences under consideration, how many different models do we 

need to check?

● Checking if KB  ⊨ 𝜶 for propositional logic is a Co-NP complete problem.
○ So any approach will take “a lot” of time.

● Is there a way to do Inferences without going through all models?
○ Yes, via Theorem Proving
○ Useful when the number of models is large but there is a short “proof”



Theorem Proving
● A different approach to making deductions.

● Does not go through all models
○ More Syntactic

● Done by applying Rules of Inferences
○ Example :   If KB has 𝛂V𝝱  and ￢𝛂 then we can say KB  ⊨ 𝝱

■ This is based on the following Rule : 𝛂V𝝱 ￢𝛂
—-------------------------------------

  𝝱
○ We can have many such rules

●   Goal is to  arrive at 𝛂  starting from KB, using a sequence of application of such rules

 



Towards obtaining the rules
● Logical Equivalence:

○ 𝛂 is equivalent to 𝝱  (Denoted by 𝛂 ☰ 𝝱 )  if M(𝛂) =  M(𝝱)

■ Same as saying: For every model M:   M ⊨ 𝛂  iff M ⊨ 𝝱
■  𝛂 ☰ 𝝱  iff   𝛂 ⊨ 𝝱  and 𝝱 ⊨ 𝛂

 



Towards obtaining the rules

● Validity / Tautology:    𝛂 is a Validity if  𝛂 is TRUE in all Models

○ 𝛂 ⊨ 𝝱  iff   𝛂 ⇒ 𝝱  is a validity

○ Hence, to check if 𝛂 ⊨ 𝝱 it is enough to check if 𝛂 ⇒ 𝝱 is a validity

● Satisfiability: 𝛂 is Satisfiable if  𝛂 is TRUE in some Model
○ SAT for Propositional Logic was the first problem that was proved to be NP-complete

● 𝛂 is Valid iff ￢𝛂 is not satisfiable
■ Hence, 𝛂 ⊨ 𝝱  iff  ( 𝛂 Λ  ￢𝝱 ) is not Satisfiable

● We will try to develop rules for making deductions



Inference Rules
● Modus Ponens : 𝛂 ⇒ 𝝱 𝛂

—-------------------------------------
  𝝱

○ If  (WumpusAhead Λ WumpusAlive) ⇒ Shoot  and (WumpusAhead Λ WumpusAlive) are given  
then Shoot  can be inferred

● AND - Elimination: 𝛂 Λ 𝝱
—-------------------------------------

  𝛂

● These Rules are Sound
○ Proof: Consider all possible Truth values for 𝛂 and 𝝱 to verify

● Always have Sound rules (otherwise we will be making wrong deductions)



Inference Using Rules
● Knowledge base (KB) has the following information:

R1    :  ¬P1,1    R2    :   B1,1 ⇔ ( P1,2 V  P2,1)

R3    :   B2,1 ⇔ ( P1,1 V  P2,2V  P3,1  )
R4    :   ¬B1,1  R5    :   B2,1 

● How to infer ¬P1,2   from the KB using Inference Rules ? 
● R6 : (B1,1 ⇒(P1,2 V  P2,1)) Λ ((P1,2 V P2,1) ⇒B1,1)        [Biconditional elimination on R2  ]

● R7 : ((P1,2  V  P2,1) ⇒B1,1) [And-Elimination on R6 ]

● R8 :  (¬B1,1 ⇒ ¬ (P1,2  V  P2,1) ) [Logical Equivalence of Contrapositives on R7 ]

● R9 : ¬ (P1,2  V  P2,1) [ Modus Ponens on R8   and R4   ] 

● R10 : ¬P1,2  Λ  ¬ P2,1 [ De Morgan’s Law on R9   ] 

● R11 : ¬P1,2 [And-Elimination on R10  ]



Algorithm for Inference using Rules

● Can be seen of as a Search Problem:
○ Initial State :   Knowledge Base KB     [ Every state corresponds to a set of sentences]

○ Actions : All the inference rules applied to all the sentences that match the top half of the 
inference rule.

○ Result :  of an Action is to add the sentence in the bottom half of the inference rule.

○ Goal : States that contain  the sentence we are trying to prove.

● Monotonicity Property : If  KB  ⊨ 𝛂   then  KB Λ 𝝱 ⊨ 𝛂  
○ Search can ignore sentences that are not relevant to 𝛂
○ There are some Non-Monotonic Logics but we will not discuss it here

● This algorithm works ONLY IF we have a “complete” set of Inference Rules
○ How do we know we have sufficiently many inference rules?



Another Interesting Rule
● R1     :  ¬P1,1    R2    :   B1,1 ⇔ ( P1,2 V  P2,1)

R3    :   B2,1 ⇔ ( P1,1 V  P2,2V  P3,1  ) R4    :   ¬B1,1  
R5    :   B2,1 R6   : (B1,1 ⇒(P1,2 V  P2,1)) Λ ((P1,2 V P2,1) ⇒B1,1)       
R7    : ((P1,2  V  P2,1) ⇒B1,1) R8  :  (¬B1,1 ⇒ ¬ (P1,2  V  P2,1) )
R9   : ¬ (P1,2  V  P2,1) R10 : ¬P1,2  Λ  ¬ P2,1
R11 : ¬P1,2 

● Say we also have the following in KB
R12   :   ¬B1,2 R13    :   B1,2 ⇔ ( P1,1 V  P2,2V  P1,3  )

● Using similar reasoning as previous example,  from R12 and R13 we get:
R14   :   ¬P2,2 R15   :   ¬P1,3

● Using Bi-conditional elimination on R3  followed by And-elimination and MP on R5

R16   :   ( P1,1 V  P2,2V  P3,1  )

● Resolution Rule :   ¬P2,2  in  R14    Resolves P2,2   in  R16 to give
R17   :   ( P1,1 V  P3,1  )

● Resolution Rule :   ¬P1,1  in  R1    Resolves P1,1   in  R17 to give
R18   :  P3,1  



Unit Resolution
●       𝓁1 V  𝓁2 V  … 𝓁i-1 V  𝓁i  V  𝓁i+1 V  … 𝓁k 𝓂

—----------------------------------------------------------------      (Unit Resolution Rule)
𝓁1 V  𝓁2 V  … 𝓁i-1 V  𝓁i+1 V  … 𝓁k

● Here, each 𝓁j  is a literal, 𝓂 is also a literal, and 𝓁i   and 𝓂  are complementary 
literals (one is the negation of the other)

● Called Unit Resolution because second sentence is a unit clause (contains one 
literal)

●  Can we generalize the second sentence to a disjunction ?



Resolution
●    𝓁1 V  𝓁2 V  … 𝓁i-1 V  𝓁i  V  𝓁i+1 V  … 𝓁k  𝓂1 V  𝓂2 V  … 𝓂j-1 V  𝓂j  V  𝓂j+1 V  …𝓂n

—----------------------------------------------------------------------------------------------- (Resolution Rule)
𝓁1 V  … 𝓁i-1 V  𝓁i+1 V  … 𝓁k V 𝓂1 V  … 𝓂j-1 V  𝓂j+1 V  … 𝓂n

● Where, each 𝓁i  and 𝓂j are complementary literals (one is the negation of the other)

● Example : 
( P1,1 V  P3,1  ) (¬P1,1 V  ¬P2,21  )

—-----------------------------------------------------------
(  P3,1  V  ¬P2,21  )

● Only one literal can be resolved at a time
P V¬Q V R  ¬PVQ P V¬Q V R    ¬PVQ P V ¬Q V R    ¬PVQ
—-------------------------       —------------------------------- —------------------------------- (Wrong)      
      ¬Q V R V Q P V R   V ¬P R

● Resolution Rule is Sound
● THIS SINGLE RULE  COMPLETE



Conjunctive Normal Form
● Resolution applies only if the two sentences are in the form of Disjunctions 

(Clause)
○ How can it be Complete?

● Every Propositional Sentence can we written as a conjunction of Clauses



Conjunctive Normal Form
● Every Propositional Sentence can be written as a CNF sentence

● Example:  B1,1 ⇔ ( P1,2 V  P2,1)

○  ( B1,1 ⇒ ( P1,2 V  P2,1) ) Λ (  ( P1,2 V  P2,1) ⇒ B1,1 )

○ ( ¬B1,1 V P1,2 V  P2,1 ) Λ ( ¬( P1,2 V  P2,1) V B1,1 )

○ ( ¬B1,1 V P1,2 V  P2,1 ) Λ ( (¬P1,2 Λ  ¬P2,1) V B1,1 )

○ ( ¬B1,1 V P1,2 V  P2,1 ) Λ (¬P1,2 V B1,1 ) Λ  (¬P2,1 V B1,1 )



Resolution Algorithm
● To check whether  KB  ⊨ 𝛂 , we will check whether (KB Λ ¬𝛂) is unsatisfiable

○ Convert   (KB Λ ¬𝛂) into CNF and let S = Set of all clauses in the CNF
○ Apply the resolution rule whenever possible and keep on adding them to  S

■ If at any point of time, Empty Clause is added to S then return  KB  entails 𝛂
■ If there are no new clauses that can be added to S, then return KB does not entail 𝛂

● Empty clause - Disjunction of 0 literals 
○ Will be obtained when we resolve P  and ¬P
○ Empty Clause is not satisfiable  

(because, for a disjunction to be true, at least one of the disjuncts should be true)
○ For any formula 𝛂 if the algorithm derives an empty clause then 𝛂  is not satisfiable

■ Proof : Rule ensures that  if antecedant is satisfiable then consequent is also satisfiable
  But the last consequent is not satisfiable, hence its parent is not satisfiable
  Keep going up the tree and at the root we have 𝛂 which will not be satisfiable

● Soundness: If the Algorithm returns  KB  entails 𝛂  then it is actually the case
○ Algorithm returns KB  entails 𝛂  only when Empty Clause is derived for  (KB Λ ¬𝛂)
○ This implies that  (KB Λ ¬𝛂) is unsatisfiable, hence  KB  entails 𝛂


