- To check whether KB $\models \alpha$, we will check whether (KB $\land \neg \alpha$) is NOT satisfiable
 - \circ Convert (KB $\wedge \neg \alpha$) into CNF and let S = Set of all clauses in the CNF
 - Apply the resolution rule whenever possible and keep on adding them to S
 - If at any point of time, Empty Clause is added to S then return **KB** entails α
 - lacktriangle If there are no new clauses that can be added to S, then return **KB does not entail** lpha

- Empty clause Disjunction of O literals
 - Will be obtained when we resolve P and ¬P
 - Empty Clause is not satisfiable
 (because, for a disjunction to be true, at least one of the disjuncts should be true)

- ullet For any formula lpha if the algorithm derives an empty clause then lpha is not satisfiable.
 - o By induction on the number of steps needed to derive the empty clause.
 - \circ Base case : If it takes one step then S contains two clauses of the form { P } and { ¬P } Hence α (same as S) not satisfiable.
 - o Induction Step: $S \rightarrow S' \rightarrow \rightarrow S^0$ where S' to S^0 takes n-1 steps and S^0 contains empty set. So By induction, S' is not satisfiable. Suppose S is satisfiable, let M be the model such that $M \models S$.

We can argue that $M \models S'$ which is a contradiction. Pick an arbitrary clause C from S'

- If C is already in S then $M \models C$
- Otherwise, C is obtained because of resolution rule applied to two clauses A and B from S.

- By assumption, $M \models A$ and $M \models B$.
- Note that M assigns either ℓ_i to True or m_i to True
- In both cases $M \models C$.

- To check whether KB $\models \alpha$, we will check whether (KB $\land \neg \alpha$) is NOT satisfiable
 - \circ Convert (KB $\wedge \neg \alpha$) into CNF and let S = Set of all clauses in the CNF
 - Apply the resolution rule whenever possible and keep on adding them to S
 - If at any point of time, Empty Clause is added to S then return KB entails α
 - lacktriangle If there are no new clauses that can be added to S, then return **KB does not entail** lpha

- Soundness: If the Algorithm returns KB entails α then it is actually the case
 - \circ Algorithm returns KB entails α only when Empty Clause is derived for (KB $\wedge \neg \alpha$)
 - \circ This implies that (KB $\wedge \neg \alpha$) is unsatisfiable, hence KB entails α

Completeness:

For any KB and α if KB entails α then the Algorithm returns KB entails α

- \circ Same as proving: If (KB $\wedge \neg \alpha$) is unsatisfiable then Empty Clause is added to S at some point
- Ground Resolution Theorem : If a set of Clauses is unsatisfiable then the Resolution of those clause will contain empty clause
 - Proof by Contraposition:
 - Let S be a set of clauses and let RC(S) be the set of all clauses in the Resolution Closure of S
 - lacktriangle Note that S is contained in RC(S)
 - We will prove that if RC(S) does not contain empty clause then S is satisfiable

Resolution Algorithm: Completeness

- Assume that RC(S) does not contain empty clause
 - \circ Let P_1P_2 P_k be the set of all atomic sentences that occur in S
 - \circ For i = 1 to k
 - If there is a clause C in RC(S) such that $\neg P_i$ is a literal in C and all other literals of C are FALSE under the assignment chosen for P_1P_2 P_{i-1} then assign P_i = FALSE
 - lacktriangledown Otherwise, assign P_i = TRUE
- This model satisfies all the clauses in RC(S). Suppose not. Then:
 - \circ Choose the smallest i such that assignment of P_i causes some clause C in RC(S) to becomes FALSE
 - O Hence all other literals of C have already been assigned to FALSE. So, at step i the clause C looks like ($\ell_1 V \ \ell_2 \ V \ \ \ell_k \ V \ P_i$) or ($m_1 \ V \ m_2 \ V \ \ m_n V \ \neg P_i$) where each ℓ_i (or) m_i is is a literal over $P_1 P_2 \ P_{i-1}$ and the literal is assigned to FALSE
 - \circ Now if just one of the above two clauses were present in RC(S) then the algorithm would assign P_i appropriately so that the clause is satisfied
 - \circ If both are present then using P_i to resolve the two clauses we get ($\ell_1 V \ell_2 V \dots \ell_k V m_1 V m_2 V \dots m_n$)
 - \circ This new clause would be FALSE with the current assignment for P_1 P_2 P_{i-1} (Contradiction to minimality of i)

- To check whether KB $\models \alpha$, we will check whether (KB $\land \neg \alpha$) is NOT satisfiable
 - \circ Convert (KB $\wedge \neg \alpha$) into CNF and let S = Set of all clauses in the CNF
 - Apply the resolution rule whenever possible and keep on adding them to S
 - If at any point of time, Empty Clause is added to S then return **KB** entails α
 - lacktriangle If there are no new clauses that can be added to S, then return **KB does not entail** lpha

- Sound and Complete Algorithm for making inferences
- Worst Case : Exponential Time
 - Can it be made better?
 - Most likely No (Open problem)

Horn Clauses

- In many real world applications, the propositional sentences have a particular structure
 - We can have more efficient algorithm to check for entailment for such formulas
- Definite Clause: Disjunction of literals where exactly one literal is positive
- Horn Clause: Disjunction of literals where at most one literal is positive

- Examples:
 - \circ ($\neg P_{1,1} \lor \neg W_{1,1} \lor B_{1,1}$) is a definite clause ($\neg P_{1,1} \lor W_{1,1} \lor B_{1,1}$) is not a definite clause
 - \circ ($\neg P_{1,1} \lor \neg W_{1,1} \lor \neg B_{1,1}$) is not a definite clause but it is a horn clause
- Every Definite clause is a Horn Clause

Horn Clauses

- Every Definite Clause can be written as implication whose premise is a conjunction of positive literals and conclusion is a positive literal
 - (¬WumpusAhead ∨ ¬Arrow ∨ Shoot) can be written as (WumpusAhead ∧ Arrow) ⇒ Shoot
 - Can you write a single literal in implication form?
 - $B_{1,1}$ can be written as $T \Rightarrow B_{1,1}$
- Can we write Horn Clauses in implicational form?
 - Yes
 - O How to write a clause with only negative literals in implication form?
- In a Horn clause in its implicational form:
 - Premise is called the body of the clause
 - Conclusion is called the head of the clause
 - Clause with a single literal is called a fact
- Horn clauses are closed under Resolution
 - o Resolving Horn clauses will give always result in Horn clauses
- Entailment for Horn formulas can be done in Linear Time in the size of the KB
 - Forward Chaining
 - Backward Chaining

Horn Clauses: Forward Chaining

- Given a KB (Set of Horn clauses) and a Proposition P, does KB ⊨ P?
 - Start with S as the set of all facts in KB
 - Repeat until S saturates
 - If there is a horn clause C such that all the propositions in the body of C are in S then add the head of C to S
 - If P is in S then return YES, else return No
 - Example:
- Initialize S to { A,B}
- Add L to S
- Add M to S
- Add P to S
- Add Q to S
- Finally S = { A, B, L, M, P, Q }

```
P \Rightarrow Q
L \land M \Rightarrow P
B \land L \Rightarrow M
A \land P \Rightarrow L
A \land B \Rightarrow L
A
```

B

Horn Clauses: Forward Chaining

- Given a KB (Set of Horn clauses) and a Proposition P, does KB ⊨ P?
 - Start with S as the set of all facts in KB
 - Repeat until S saturates
 - If there is a horn clause C such that all the propositions in the body of C are in S then add the head of C to S
 - If P is in S then return YES, else return No
 - Forward Chaining is Sound
 - It is repeated application of Modus Ponens
 - Forward Chaining is Complete: If P is not in S finally then KB ⊭ P
 - Take the final S and assign every P in S to TRUE and the rest to FALSE
 - This model satisfies KB and falsifies all propositions not in S

Horn Clauses: Forward Chaining

- Given a KB (Set of Horn clauses) and a Proposition P, does KB ⊨ P?
 - Start with S as the set of all facts in KB
 - Repeat until S saturates
 - If there is a horn clause C such that all the propositions in the body of C are in S then add the head of C to S
 - If P is in S then return YES, else return No

- This is a Data-driven approach
 - S can be computed only using KB, no need of P as input
 - S can be precomputed and for any given P
 - Might be doing unnecessary computation and waste space and time

Horn Clauses: Backward Chaining

- Given a KB (Set of Horn clauses) and a Proposition P, does KB ⊨ P?
 - Start from the Goal
 - Identify the clauses where the Goal is the head
 - Can we conclude the body of this clause?
 - Recursively do this, carefully avoiding loops

```
P \Rightarrow Q
L \land M \Rightarrow P
B \land L \Rightarrow M
A \land P \Rightarrow L
A \land B \Rightarrow L
A
```

- This is a Goal-driven approach
- Running time is generally less than linear time in the size of KB
 - Since it only checks for relevant clauses

Propositional Logic : Inference tools

- The problem of checking whether KB $\models \alpha$ is a coNP-complete
 - Unlikely to have efficient algorithms
- However there are tools that work very well on almost all real world input instances
 - With millions or clauses and variables
- Approaches used in these tools:
 - Search Algorithm : Local search with clever cost and neighbourhoods.
 - DPLL Algorithm : Based on resolution

Search Based Algorithms

- Start state: An arbitrary assignment
- Neighbours: 1bit flip, 2 bit-flip, ...
- Cost/Value : Number of clauses satisfied by the assignment
- Useful variant of Neighbourhood search (WalkSat):
 - Randomly choose on of the following actions:
 - Choose neighbour of the current assignment that maximizes the number of satisfied clauses
 - Among the currently unsatisfied clauses, pick one clause C at random, Flip the assignment of some variable of the clause
 - Return Failure if you run out of a threshold time limit
- Takes a lot of time when the formula is unsatisfiable
 - Useful when we know for sure that the formula is satisfiabile and we want to find an assignment
- Inference: Agent can say one of the following:
 - The formula is satisfiable, here is the assignment
 - I tried for 1 hour, but I could not come up with any satisfying assignment

Resolution Based DPLL Algorithm

- WALKSAT is not complete
- DPLL algorithm is also complete and works well as a tool
 - Named after its creators: Davis, Putnam, Logemann and Loveland
 - Uses Resolution
- Features:
 - Early Detection : Returns True/False even with partial assignments
 - Unit Clause Heuristics: Unit clauses are assigned True/False with priority
 - Includes clauses where all literals are set to False except for one literal
 - Pure Symbol Heuristics: Symbols that occur only positively (or) only negatively in all unsatisfied clauses
 - Easy to set True/False for Pure symbols

Resolution Based DPLL Algorithm

- DPLL-Algorithm (Formula S)
 - C ← Clauses of S in CNF form
 - ∨ ← Variables of S
 - Return DPLL-Find (C, V, {})
- DPLL-Find (Clauses C, unassigned variables V, Partial Model M)
 - If every clause in C is true in M then Return True
 - If there is some clause in C that is false in M then Return False
 - P,value ← FindPureSymbols (C, M)
 - If P is not empty then Return DPLL-Find (C, V \ {P}, M U {P = value})
 - P,value ← FindUnitClauses (C, M)
 - If P is not empty then Return DPLL-Find (C, V \ {P}, M U {P = value})
 - \circ P \leftarrow First(V)
 - Return DPLL-Find(C, V \ { P}, M U { P = True}) OR DPLL-Find(C,V \ {P}, M U {P = False})

Resolution Based DPLL Algorithm

- Lot of engineering goes into the implementation
 - Component Analysis: Partition clauses into subsets that do not contain common variables and solve them separately
 - Pick variable in the last case intelligently (like the most frequently occurring variable)
 - Also pick which branch to explore first : True branch or the False branch?
 - Backtrack carefully: Go back to the relevant point instead of one step back
 - Maintain checkpoints
 - Random restarts: If it seems that there is no progress, restart with different choice
 - Clever Indexing: Use data structures that can give quick answers to questions like:
 - Set of all unsatisfied clauses where the proposition P occurs positively
 - Data structure needs to be dynamic since unsatisfied clauses keep changing

WalkSAT v/s DPLL Algorithm

- There are tools based on both these approaches (and many more)
- WalkSAT is much faster than DPLL
 - Refer book for a graph on the running time comparison
- WalkSAT is not complete (negative instances are hard to detect)
- DPLL is complete

Equipping agents with the power of inferencing

- Till now we only looked and how Inference can be done
- We need to integrate this power to the agent.
 - A drone inside a building in fire should:
 - Do such inference, figure out where to go and find an optimal path to its destination
- Agent should keep track of the percept history and use it to make inferences

Equipping agents with the power of inferencing

- The knowledge base typically includes two things
 - General rules of the framework:
 - Like when do we detect stench, Breeze, There is exactly one Wumpus, arrow can be shot only once
 - Knowledge based on percept history in the current scenario:
 - There is no pit in (2,1), (3,2) is safe, Wumpus is dead, Arrow is still there ...
- Typically at the start Knowledge Base contains the General Rules
- As the system evolves, Agent TELLs the KB about new information based on percepts

- Handling Fluents
- Representing the Fluent axioms in the KB
- Hybrid Agent for Wumpus World
- Using Propositional Inferencing to make Plan

Current State of the world

- There are propositions whose truth values keeps changing as the current state of the world changes
 - I am sensing Stench / I have an arrow / I am facing East /
- Fluents: Propositions whose True/False change over time
- Atemporal variables: Propositions whose True/False is fixed
 - Location (3,1) has stench / Wumpus is in (4,3) /
- We cannot have a single proposition for Fluents
 - It should consider the time step also

Propositions for Fluents

- KB should have the information on how fluents are updated
 - Example: If I have an arrow at time t and my action was move forward then I will also have arrow at time t+1
 - These are called as Effect Axioms
 - ($L_{1,1}^0 \land FacingEast^0 \land Forward^0$) \Rightarrow ($L_{2,1}^1 \land \neg L_{1,2}^1 \land \neg L_{2,2}^1 \land$)

- Handling Fluents
- Representing the Fluent axioms in the KB
- Hybrid Agent for Wumpus World
- Using Propositional Inferencing to make Plan

Frame Problem

- ($L^0_{1,1} \land FacingEast^0 \land Forward^0$) \Rightarrow ($L^1_{2,1} \land \neg L^1_{1,2} \land \neg L^1_{2,2} \land$)
 - We need for every point (x,y) and for every time step t (we do not even have an a priori limit on the time)
 - We need such formulas in the knowledge base for every action
 Grab / Shoot / Climb / TurnLeft /
- There is still something unspecified:
 - We also need to say what remains unchanged
 - Example: When Forward action is performed at time t, Wumpus Alive/Dead is unchanged
 - This is what is called the frame problem
 - In a frame (either in inertial frame of physics or movie frame)
 Every action changes a few things and most things remain unchanged.

Towards lesser number of axioms

- We also need to say what fluents remains unchanged depending on the action:
 - (Forward^t) ⇒ (haveArrow^t ⇔ haveArrow^{t+1})
 - (Forward^t) \Rightarrow (wumpusAlive^t \Leftrightarrow wumpusAlive^{t+1})
- If there are m Actions and n Fluents, how many such axioms do we need at every time step?
 - O(mn)
 - This explosion is called: Representational frame problem
- Can we have smaller number of formulas that encodes the same information?

Representing Frame axioms

- Instead having axioms for each action, have one axiom for each fluent stating when it changes:
 - haveArrow^{t+1} ⇔ (haveArrow^t ∧ ¬ shoot^t)

- This way of presenting the axioms have one formula per fluent at every time step.
- We have O(n) formulas at every time step where n is the number of fluents.

Qualification Problem

- Suppose we have encoded all information about the wumpus world efficiently in our knowledge
- Use state of the art SAT solver to make inferences
- Can we be confident that our job is done?
 - Maybe not. When the agent moves forward, there might be fire!
 - We cannot anticipate everything that a drone might encounter when it is dealing with a building on fire
- This is called the qualification problem
 - No solution using Logic
 - One possible solution : Use probability (Action succeeds with some probability)

- Handling Fluents
- Representing the Fluent axioms in the KB
- Hybrid Agent for Wumpus World
- Using Propositional Inferencing to make Plan

Equipping agents with the power of inferencing Hybrid Agent

- Agent starts with a Knowledge Base containing Atemporal axioms
 - Axioms that do not depend on time steps
- At every step:
 - New percept sentence is added
 - All the axioms that depend on t are added
 - The agent uses logical inference, by ASKing questions of the knowledge base, to work out which squares are safe and which have yet to be visited.
 - Take the most appropriate action
- Which action to be taken?
 - Should be based on priority

Hybrid Agent for Wumpus World

- If there is glitter in the current location, perform GRAB and plan to move to the initial square and perform CLIMB
- Otherwise, choose one of the safe location that is not yet visited and plan to move there only using safe locations.
 - This can be done using A* or other search techniques
- If there are no safe squares to explore:
 - If the agent still has an arrow try to make a safe square by shooting at one of the possible wumpus locations.
 - Otherwise, look for a location that is not provably unsafe—that is, a square for which ASK(KB, ¬OK) is False.
 - If there is no such square, then the mission is impossible and the agent retreats to [1, 1] and climbs out of the cave.