Resolution Algorithm

e To check whether KB F a, we will check whether (KB A ~a) is NOT satisfiable
o Convert (KB A ~a)into CNF and let S = Set of all clauses in the CNF
o Apply the resolution rule whenever possible and keep on adding themto S
m If at any point of time, Empty Clause is added to S then return KB entails a
m |If there are no new clauses that can be added to S, then return KB does not entail a

e Empty clause - Disjunction of O literals
o Will be obtained when we resolve P and =P
o Empty Clause is not satisfiable
(because, for a disjunction to be true, at least one of the disjuncts should be true)

Resolution Algorithm

For any formula « if the algorithm derives an empty clause then o is not

satisfiable.
o By induction on the number of steps needed to derive the empty clause.

o Base case : If it takes one step then S contains two clauses of the form { P } and { =P }
Hence o (same as S) not satisfiable.

o Induction Step : S + S’ » ... » S° where S’ to S° takes n-1 steps and S° contains empty set.
So By induction, S’ is not satisfiable. Suppose S is satisfiable, let M be the model such that M = S.

We can argue that M £ S’ which is a contradiction. Pick an arbitrary clause C from S’
m IfCisalreadyin Sthen MEC
m Otherwise, C is obtained because of resolution rule applied to two clauses A and B from S.

A= (N LN AN (N LN ..
B = m1V m2V m._1V M’&J V m.+,|V ...mn

C= 4V 4N LN LN N m, N om, N om
i- i+ j-1 j+ n
m By assumption, MF Aand M = B.
m Note that M assigns either / to True or m, to True

m InbothcasesME~C.

Resolution Algorithm

e To check whether KB F a, we will check whether (KB A ~a) is NOT satisfiable

o Convert (KB A ~a)into CNF and let S = Set of all clauses in the CNF
o Apply the resolution rule whenever possible and keep on adding themto S
m If at any point of time, Empty Clause is added to S then return KB entails a
m |If there are no new clauses that can be added to S, then return KB does not entail a

e Soundness: If the Algorithm returns KB entails a then it is actually the case
o Algorithm returns KB entails a only when Empty Clause is derived for (KB A ~a)
o This implies that (KB A —a) is unsatisfiable, hence KB entails a

Resolution Algorithm

e Completeness:

For any KB and a if KB entails a then the Algorithm returns KB entails «
o Same as proving: If (KB A ~a) is unsatisfiable then Empty Clause is added to S at some point

e Ground Resolution Theorem : If a set of Clauses is unsatisfiable then the

Resolution of those clause will contain empty clause
o Proof by Contraposition:

m LetS be asetofclauses and let RC(S) be the set of all clauses in the Resolution Closure of
S
m Note that S is contained in RC(S)

m We will prove that if RC(S) does not contain empty clause then S is satisfiable

Resolution Algorithm : Completeness

e Assume that RC(S) does not contain empty clause
o LetP P, ... P be the set of all atomic sentences that occur in S
o Fori=1tok
m [fthereis a clause Cin RC(S) such that ~P. is a literal in C and all other literals of C are FALSE
under the assignment chosen for P, P, P._,then assign P.= FALSE
m Otherwise, assign P = TRUE

e This model satisfies all the clauses in RC(S). Suppose not. Then:
o Choose the smallest i such that assignment of P, causes some clause C in RC(S) to becomes FALSE

o Hence all other literals of C have already been assigned to FALSE.
So, at step i the clause C looks like (/V 4V ... 4 V P) or (m V m,V ..mV P)
where each / (or) m is is a literal over P, P, P_, and the literal is assigned to FALSE

o Now if just one of the above two clauses were present in RC(S) then the algorithm would assign P,
appropriately so that the clause is satisfied
o If both are present then using P, to resolve the two clauses we get (V4 V ... 4 Vm, NV m,V ... m)
o This new clause would be FALSE with the current assignment for P, Py P
(Contradiction to minimality of i)

i1

Resolution Algorithm

e To check whether KB F a, we will check whether (KB A ~a) is NOT satisfiable

o Convert (KB A ~a)into CNF and let S = Set of all clauses in the CNF
o Apply the resolution rule whenever possible and keep on adding themto S
m If at any point of time, Empty Clause is added to S then return KB entails a
m |If there are no new clauses that can be added to S, then return KB does not entail a

e Sound and Complete Algorithm for making inferences

e Worst Case : Exponential Time

o Can it be made better?
m Most likely No (Open problem)

Horn Clauses

In many real world applications, the propositional sentences have a particular

structure
o We can have more efficient algorithm to check for entailment for such formulas

Definite Clause : Disjunction of literals where exactly one literal is positive

Horn Clause : Disjunction of literals where at most one literal is positive

Examples:
o (7P,, VW, VB,,)is adefinite clause (=P, , VW, VB, .)is nota definite clause
o (°P,, V"W, VB,)is nota definite clause but it is a horn clause

Every Definite clause is a Horn Clause

Horn Clauses

Every Definite Clause can be written as implication whose premise is a conjunction of positive literals and

conclusion is a positive literal
o ("WumpusAhead V —Arrow V Shoot) can be written as (WumpusAhead A Arrow) = Shoot
o Can you write a single literal in implication form?
| B1!1 can be writtenas T = B1‘1

Can we write Horn Clauses in implicational form?
o Yes
o How to write a clause with only negative literals in implication form?
= (°P,,V-W, V=B,) canbewritenas (P, AW AB) = 1

In a Horn clause in its implicational form:
o Premise is called the body of the clause
o Conclusion is called the head of the clause
o Clause with a single literal is called a fact

Horn clauses are closed under Resolution
o Resolving Horn clauses will give always result in

Entailment for Horn formulas can be done in Linear Time in the size of the KB
o Forward Chaining
o Backward Chaining

Horn

clauses

Horn Clauses : Forward Chaining

e Given a KB (Set of Horn clauses) and a Proposition P, does KB P ?

o Start with S as the set of all facts in KB
o Repeat until S saturates
m Ifthereis a horn clause C such that all the propositions in the body of C are in S then
add the head of Cto S

o IfPisin S then return YES, else return No P=Q
LAM = P
BAL=M
AAP =L
e Example: Ak Rk T

o Initialize S to { A,B} A

o AddLtoS B

o AddMtoS

o AddPtoS

o AddQtoS

o FinallyS={A,B,L,M,P,Q}

Horn Clauses : Forward Chaining

e Given a KB (Set of Horn clauses) and a Proposition P, does KB P ?

o Start with S as the set of all facts in KB
o Repeat until S saturates
m Ifthereis a horn clause C such that all the propositions in the body of C are in S then
add the head of Cto S
o IfPisin Sthen return YES, else return No

e Forward Chaining is Sound
e Itis repeated application of Modus Ponens

e Forward Chaining is Complete : If Pis notin S finally then KB ¥ P
e Take the final S and assign every P in S to TRUE and the rest to

FALSE
e This model satisfies KB and falsifies all propositions notin S

Horn Clauses : Forward Chaining

e Given a KB (Set of Horn clauses) and a Proposition P, does KB P ?

o Start with S as the set of all facts in KB
o Repeat until S saturates
m Ifthereis a horn clause C such that all the propositions in the body of C are in S then
add the head of Cto S
o IfPisin Sthen return YES, else return No

e This is a Data-driven approach
o S can be computed only using KB, no need of P as input
o S can be precomputed and for any given P
o Might be doing unnecessary computation and waste space and time

Horn Clauses : Backward Chaining

e Given a KB (Set of Horn clauses) and a Proposition P, does KB =P ?

o Start from the Goal
o ldentify the clauses where the Goal is the head
m Can we conclude the body of this clause?

e Recursively do this, carefully avoiding loops
P= 0

LAM = P
BAL=>M
AAP = L
AAB =L

e This is a Goal-driven approach 5
® Running time is generally less than linear time in the size of KB

m Since it only checks for relevant clauses

Propositional Logic : Inference tools

The problem of checking whether KB = a is a coNP-complete
o Unlikely to have efficient algorithms

However there are tools that work very well on almost all real world input
instances
o With millions or clauses and variables

Approaches used in these tools:

o Search Algorithm : Local search with clever cost and neighbourhoods.

o DPLL Algorithm : Based on resolution

Search Based Algorithms

Start state: An arbitrary assignment
Neighbours: 1bit flip, 2 bit-flip, ...
Cost/Value : Number of clauses satisfied by the assignment

Useful variant of Neighbourhood search (WalkSat):
o Randomly choose on of the following actions:
e Choose neighbour of the current assignment that maximizes the number of satisfied clauses
e Among the currently unsatisfied clauses, pick one clause C at random, Flip the assignment of
some variable of the clause

o Return Failure if you run out of a threshold time limit

Takes a lot of time when the formula is unsatisfiable
o Useful when we know for sure that the formula is satisfiabile and we want to find an assignment

Inference: Agent can say one of the following:
o The formula is satisfiable, here is the assignment
o |tried for 1 hour, but | could not come up with any satisfying assignment

Resolution Based DPLL Algorithm
e WALKSAT is not complete

e DPLL algorithm is also complete and works well as a tool

o Named after its creators : Davis, Putnam, Logemann and Loveland
o Uses Resolution

e Features:
o Early Detection : Returns True/False even with partial assignments

o Unit Clause Heuristics : Unit clauses are assigned True/False with priority
m Includes clauses where all literals are set to False except for one literal

o Pure Symbol Heuristics : Symbols that occur only positively (or) only negatively in all unsatisfied
clauses
m Easy to set True/False for Pure symbols

Resolution Based DPLL Algorithm

DPLL-Algorithm (Formula S)

o C « Clauses of S in CNF form
o V <« Variables of S
o Return DPLL-Find (C, V,{})

DPLL-Find (Clauses C, unassigned variables V, Partial Model M)

If every clause in C is true in M then Return True

If there is some clause in C that is false in M then Return False

P,value < FindPureSymbols (C, M)

If P is not empty then Return DPLL-Find (C, V \{P}, M U {P = value})

P,value < FindUnitClauses (C, M)

If P is not empty then Return DPLL-Find (C, V \{P}, M U {P = value})

P «— First(V)

Return DPLL-Find(C, V\{ P}, MU { P = True}) OR DPLL-Find(C,V \ {P}, M U {P = False})

o O O O O O O o

Resolution Based DPLL Algorithm

Lot of engineering goes into the implementation

o Component Analysis : Partition clauses into subsets that do not contain common variables and
solve them separately

o Pick variable in the last case intelligently (like the most frequently occurring variable)
m Also pick which branch to explore first : True branch or the False branch?

o Backtrack carefully : Go back to the relevant point instead of one step back
m Maintain checkpoints

o Random restarts : If it seems that there is no progress, restart with different choice
o Clever Indexing : Use data structures that can give quick answers to questions like:

m Set of all unsatisfied clauses where the proposition P occurs positively
m Data structure needs to be dynamic since unsatisfied clauses keep changing

WalkSAT v/s DPLL Algorithm

There are tools based on both these approaches (and many more)

WalkSAT is much faster than DPLL

o Refer book for a graph on the running time comparison

WalkSAT is not complete (negative instances are hard to detect)

DPLL is complete

Equipping agents with the power of inferencing
Till now we only looked and how Inference can be done

We need to integrate this power to the agent.
o Adrone inside a building in fire should:
m Do such inference, figure out where to go and find an optimal path to its
destination

Agent should keep track of the percept history and use it to make
inferences

Equipping agents with the power of inferencing

The knowledge base typically includes two things

o General rules of the framework:
m Like when do we detect stench, Breeze, There is exactly one Wumpus, arrow
can be shot only once
o Knowledge based on percept history in the current scenario:
m Thereisnopitin(2,1), (3,2) is safe, Wumpus is dead, Arrow is still there ...

Typically at the start Knowledge Base contains the General Rules

As the system evolves, Agent TELLs the KB about new information
based on percepts

Handling Fluents
Representing the Fluent axioms in the KB

Hybrid Agent for Wumpus World

Using Propositional Inferencing to make Plan

Current State of the world

There are propositions whose truth values keeps changing as the
current state of the world changes
o | am sensing Stench /| have an arrow / | am facing East/

Fluents : Propositions whose True/False change over time
Atemporal variables : Propositions whose True/False is fixed

o Location (3,1) has stench / Wumpus isin (4,3)/

We cannot have a single proposition for Fluents
o It should consider the time step also

Propositions for Fluents

e KB should have the information on how fluents are updated
o Example : If | have an arrow at time t and my action was move
forward then | will also have arrow at time t+1
o These are called as Effect Axioms

o (L01’1 A FacingEast®A Forward®) = { L12,1 A - L11,2 A - L12,2/\)

Handling Fluents
Representing the Fluent axioms in the KB

Hybrid Agent for Wumpus World

Using Propositional Inferencing to make Plan

Frame Problem
o (L01’1 A FacingEast®A Forward®) = (L12’1 A = L11,2 A = L12,2/\)

o We need for every point (x,y) and for every time step t (we do not even
have an a priori limit on the time)
o We need such formulas in the knowledge base for every action
Grab / Shoot / Climb / TurnLeft /

e There is still something unspecified:
o We also need to say what remains unchanged
m Example: When Forward action is performed at time t, Wumpus
Alive/Dead is unchanged
o This is what is called the frame problem
m In aframe (either in inertial frame of physics or movie frame)
Every action changes a few things and most things remain unchanged.

Towards lesser number of axioms

We also need to say what fluents remains unchanged depending on the
action:

o (Forward!) = (haveArrow! < haveArrow!*")
o (Forward') = (wumpusAlive! ® wumpusAlive'’)

If there are m Actions and n Fluents, how many such axioms do we need
at every time step?

o O(mn)

o This explosion is called : Representational frame problem

Can we have smaller number of formulas that encodes the same
information ?

Representing Frame axioms

Instead having axioms for each action, have one axiom for each fluent
stating when it changes:
o haveArrow"! & (haveArrow! A = shoott)
o Lt+11,1 & Lt+11,1 A (- Forward! V Bump!)) V
(Lt1,2 A FacingSoutht A Forward!) V
(Ltz, , \ FacingWest' A Forward')

This way of presenting the axioms have one formula per fluent at every
time step.

We have O(n) formulas at every time step where n is the number of
fluents.

Qualification Problem

Suppose we have encoded all information about the wumpus world
efficiently in our knowledge
Use state of the art SAT solver to make inferences

Can we be confident that our job is done?

o Maybe not. When the agent moves forward, there might be fire!

o We cannot anticipate everything that a drone might encounter when
it is dealing with a building on fire

This is called the qualification problem

o No solution using Logic

o One possible solution : Use probability
(Action succeeds with some probability)

Handling Fluents
Representing the Fluent axioms in the KB

Hybrid Agent for Wumpus World

Using Propositional Inferencing to make Plan

Equipping agents with the power of inferencing
Hybrid Agent

e Agent starts with a Knowledge Base containing Atemporal axioms
o Axioms that do not depend on time steps

e At every step:
o New percept sentence is added
o All the axioms that depend on t are added
o The agent uses logical inference, by ASKing questions of the knowledge
base, to work out which squares are safe and which have yet to be visited.
o Take the most appropriate action

e \Which action to be taken?
o Should be based on priority

Hybrid Agent for Wumpus World

e Ifthere is glitter in the current location, perform GRAB and plan to move
to the initial square and perform CLIMB

e Otherwise, choose one of the safe location that is not yet visited and plan

to move there only using safe locations.
m This can be done using A" or other search techniques

e If there are no safe squares to explore:
o If the agent still has an arrow try to make a safe square by shooting at
one of the possible wumpus locations.
o Otherwise, look for a location that is not provably unsafe—that is, a
square for which ASK(KB, 7OK) is False.
o If there is no such square, then the mission is impossible and the
agent retreats to [1, 1] and climbs out of the cave.

