
Resolution Algorithm
● To check whether KB ⊨ 𝛂 , we will check whether (KB Λ ¬𝛂) is NOT satisfiable

○ Convert (KB Λ ¬𝛂) into CNF and let S = Set of all clauses in the CNF
○ Apply the resolution rule whenever possible and keep on adding them to S

■ If at any point of time, Empty Clause is added to S then return KB entails 𝛂
■ If there are no new clauses that can be added to S, then return KB does not entail 𝛂

● Empty clause - Disjunction of 0 literals
○ Will be obtained when we resolve P and ¬P
○ Empty Clause is not satisfiable

(because, for a disjunction to be true, at least one of the disjuncts should be true)

Resolution Algorithm
● For any formula 𝛂 if the algorithm derives an empty clause then 𝛂 is not

satisfiable.
○ By induction on the number of steps needed to derive the empty clause.

○ Base case : If it takes one step then S contains two clauses of the form { P } and { ¬P }
 Hence 𝛂 (same as S) not satisfiable.

○ Induction Step : S → S’ → …… → S0 where S’ to S0 takes n-1 steps and So contains empty set.
So By induction, S’ is not satisfiable. Suppose S is satisfiable, let M be the model such that M ⊨ S.

 We can argue that M ⊨ S’ which is a contradiction. Pick an arbitrary clause C from S’
■ If C is already in S then M ⊨ C
■ Otherwise, C is obtained because of resolution rule applied to two clauses A and B from S.

A = 𝓁1 V 𝓁2 V … 𝓁i-1 V 𝓁i V 𝓁i+1 V … 𝓁k
B = 𝓂1 V 𝓂2 V … 𝓂j-1 V 𝓂j V 𝓂j+1 V …𝓂n
C = 𝓁1 V … 𝓁i-1 V 𝓁i+1 V … 𝓁k V 𝓂1 V … 𝓂j-1 V 𝓂j+1 V … 𝓂n

■ By assumption, M ⊨ A and M ⊨ B.
■ Note that M assigns either 𝓁i to True or 𝓂j to True
■ In both cases M ⊨ C.

Resolution Algorithm
● To check whether KB ⊨ 𝛂 , we will check whether (KB Λ ¬𝛂) is NOT satisfiable

○ Convert (KB Λ ¬𝛂) into CNF and let S = Set of all clauses in the CNF
○ Apply the resolution rule whenever possible and keep on adding them to S

■ If at any point of time, Empty Clause is added to S then return KB entails 𝛂
■ If there are no new clauses that can be added to S, then return KB does not entail 𝛂

● Soundness: If the Algorithm returns KB entails 𝛂 then it is actually the case
○ Algorithm returns KB entails 𝛂 only when Empty Clause is derived for (KB Λ ¬𝛂)

○ This implies that (KB Λ ¬𝛂) is unsatisfiable, hence KB entails 𝛂

Resolution Algorithm
● Completeness:

 For any KB and 𝛂 if KB entails 𝛂 then the Algorithm returns KB entails 𝛂
○ Same as proving: If (KB Λ ¬𝛂) is unsatisfiable then Empty Clause is added to S at some point

● Ground Resolution Theorem : If a set of Clauses is unsatisfiable then the
Resolution of those clause will contain empty clause

○ Proof by Contraposition:
■ Let S be a set of clauses and let RC(S) be the set of all clauses in the Resolution Closure of

S

■ Note that S is contained in RC(S)

■ We will prove that if RC(S) does not contain empty clause then S is satisfiable

Resolution Algorithm : Completeness
● Assume that RC(S) does not contain empty clause

○ Let P1 P2 ………..Pk be the set of all atomic sentences that occur in S
○ For i = 1 to k

■ If there is a clause C in RC(S) such that ¬Pi is a literal in C and all other literals of C are FALSE
under the assignment chosen for P1 P2 ………..Pi-1 then assign Pi = FALSE

■ Otherwise, assign Pi = TRUE

● This model satisfies all the clauses in RC(S). Suppose not. Then:
○ Choose the smallest i such that assignment of Pi causes some clause C in RC(S) to becomes FALSE
○ Hence all other literals of C have already been assigned to FALSE.

So, at step i the clause C looks like (𝓁1V 𝓁2 V …. 𝓁k V Pi) or (𝑚1 V 𝑚2 V …. 𝑚nV ¬Pi)
where each 𝓁i (or) 𝑚j is is a literal over P1 P2 ………..Pi-1 and the literal is assigned to FALSE

○ Now if just one of the above two clauses were present in RC(S) then the algorithm would assign Pi

appropriately so that the clause is satisfied
○ If both are present then using Pi to resolve the two clauses we get (𝓁1V 𝓁2 V …. 𝓁k V𝑚1 V 𝑚2 V …. 𝑚n)
○ This new clause would be FALSE with the current assignment for P1 P2 ………..Pi-1

(Contradiction to minimality of i)

Resolution Algorithm
● To check whether KB ⊨ 𝛂 , we will check whether (KB Λ ¬𝛂) is NOT satisfiable

○ Convert (KB Λ ¬𝛂) into CNF and let S = Set of all clauses in the CNF
○ Apply the resolution rule whenever possible and keep on adding them to S

■ If at any point of time, Empty Clause is added to S then return KB entails 𝛂
■ If there are no new clauses that can be added to S, then return KB does not entail 𝛂

● Sound and Complete Algorithm for making inferences
● Worst Case : Exponential Time

○ Can it be made better?
■ Most likely No (Open problem)

Horn Clauses
● In many real world applications, the propositional sentences have a particular

structure
○ We can have more efficient algorithm to check for entailment for such formulas

● Definite Clause : Disjunction of literals where exactly one literal is positive

● Horn Clause : Disjunction of literals where at most one literal is positive

● Examples:
○ (¬P1,1 V ¬W1,1 V B1,1) is a definite clause (¬P1,1 V W1,1 V B1,1) is not a definite clause
○ (¬P1,1 V ¬W1,1 V ¬B1,1) is not a definite clause but it is a horn clause

● Every Definite clause is a Horn Clause

Horn Clauses
● Every Definite Clause can be written as implication whose premise is a conjunction of positive literals and

conclusion is a positive literal
○ (¬WumpusAhead V ¬Arrow V Shoot) can be written as (WumpusAhead Λ Arrow) ⇒ Shoot
○ Can you write a single literal in implication form?

■ B1,1 can be written as Т ⇒ B1,1

● Can we write Horn Clauses in implicational form?
○ Yes
○ How to write a clause with only negative literals in implication form?

■ (¬P1,1 V ¬W1,1 V ¬B1,1) can be written as (P1,1 Λ W1,1 Λ B1,1) ⇒ 丄

● In a Horn clause in its implicational form:
○ Premise is called the body of the clause
○ Conclusion is called the head of the clause
○ Clause with a single literal is called a fact

● Horn clauses are closed under Resolution
○ Resolving Horn clauses will give always result in Horn clauses

● Entailment for Horn formulas can be done in Linear Time in the size of the KB
○ Forward Chaining
○ Backward Chaining

Horn Clauses : Forward Chaining
● Given a KB (Set of Horn clauses) and a Proposition P, does KB ⊨ P ?

○ Start with S as the set of all facts in KB
○ Repeat until S saturates

■ If there is a horn clause C such that all the propositions in the body of C are in S then
add the head of C to S

○ If P is in S then return YES, else return No

● Example:
○ Initialize S to { A,B}
○ Add L to S
○ Add M to S
○ Add P to S
○ Add Q to S
○ Finally S = { A, B, L, M, P, Q }

Horn Clauses : Forward Chaining
● Given a KB (Set of Horn clauses) and a Proposition P, does KB ⊨ P ?

○ Start with S as the set of all facts in KB
○ Repeat until S saturates

■ If there is a horn clause C such that all the propositions in the body of C are in S then
add the head of C to S

○ If P is in S then return YES, else return No

● Forward Chaining is Sound
● It is repeated application of Modus Ponens

● Forward Chaining is Complete : If P is not in S finally then KB ⊭ P
● Take the final S and assign every P in S to TRUE and the rest to

FALSE
● This model satisfies KB and falsifies all propositions not in S

Horn Clauses : Forward Chaining
● Given a KB (Set of Horn clauses) and a Proposition P, does KB ⊨ P ?

○ Start with S as the set of all facts in KB
○ Repeat until S saturates

■ If there is a horn clause C such that all the propositions in the body of C are in S then
add the head of C to S

○ If P is in S then return YES, else return No

● This is a Data-driven approach
○ S can be computed only using KB, no need of P as input
○ S can be precomputed and for any given P
○ Might be doing unnecessary computation and waste space and time

Horn Clauses : Backward Chaining
● Given a KB (Set of Horn clauses) and a Proposition P, does KB ⊨ P ?

○ Start from the Goal
○ Identify the clauses where the Goal is the head

■ Can we conclude the body of this clause?
● Recursively do this, carefully avoiding loops

● This is a Goal-driven approach

● Running time is generally less than linear time in the size of KB
■ Since it only checks for relevant clauses

Propositional Logic : Inference tools

● The problem of checking whether KB ⊨ 𝛂 is a coNP-complete
○ Unlikely to have efficient algorithms

● However there are tools that work very well on almost all real world input
instances

○ With millions or clauses and variables

● Approaches used in these tools:

○ Search Algorithm : Local search with clever cost and neighbourhoods.

○ DPLL Algorithm : Based on resolution

Search Based Algorithms
● Start state: An arbitrary assignment
● Neighbours: 1bit flip, 2 bit-flip, …
● Cost/Value : Number of clauses satisfied by the assignment

● Useful variant of Neighbourhood search (WalkSat):
○ Randomly choose on of the following actions:

● Choose neighbour of the current assignment that maximizes the number of satisfied clauses
● Among the currently unsatisfied clauses, pick one clause C at random, Flip the assignment of

some variable of the clause

○ Return Failure if you run out of a threshold time limit

● Takes a lot of time when the formula is unsatisfiable
○ Useful when we know for sure that the formula is satisfiabile and we want to find an assignment

● Inference: Agent can say one of the following:
○ The formula is satisfiable, here is the assignment
○ I tried for 1 hour, but I could not come up with any satisfying assignment

Resolution Based DPLL Algorithm
● WALKSAT is not complete

● DPLL algorithm is also complete and works well as a tool
○ Named after its creators : Davis, Putnam, Logemann and Loveland
○ Uses Resolution

● Features:
○ Early Detection : Returns True/False even with partial assignments

○ Unit Clause Heuristics : Unit clauses are assigned True/False with priority
■ Includes clauses where all literals are set to False except for one literal

○ Pure Symbol Heuristics : Symbols that occur only positively (or) only negatively in all unsatisfied
clauses

■ Easy to set True/False for Pure symbols

Resolution Based DPLL Algorithm
● DPLL-Algorithm (Formula S)

○ C ← Clauses of S in CNF form
○ V ← Variables of S
○ Return DPLL-Find (C, V, { })

● DPLL-Find (Clauses C, unassigned variables V, Partial Model M)
○ If every clause in C is true in M then Return True
○ If there is some clause in C that is false in M then Return False
○ P,value ← FindPureSymbols (C, M)
○ If P is not empty then Return DPLL-Find (C, V \ {P}, M U {P = value})
○ P,value ← FindUnitClauses (C, M)
○ If P is not empty then Return DPLL-Find (C, V \ {P}, M U {P = value})
○ P ← First(V)
○ Return DPLL-Find(C, V \ { P}, M U { P = True}) OR DPLL-Find(C,V \ {P}, M U {P = False})

Resolution Based DPLL Algorithm
● Lot of engineering goes into the implementation

○ Component Analysis : Partition clauses into subsets that do not contain common variables and
solve them separately

○ Pick variable in the last case intelligently (like the most frequently occurring variable)
■ Also pick which branch to explore first : True branch or the False branch?

○ Backtrack carefully : Go back to the relevant point instead of one step back
■ Maintain checkpoints

○ Random restarts : If it seems that there is no progress, restart with different choice

○ Clever Indexing : Use data structures that can give quick answers to questions like:
■ Set of all unsatisfied clauses where the proposition P occurs positively
■ Data structure needs to be dynamic since unsatisfied clauses keep changing

WalkSAT v/s DPLL Algorithm
● There are tools based on both these approaches (and many more)

● WalkSAT is much faster than DPLL
○ Refer book for a graph on the running time comparison

● WalkSAT is not complete (negative instances are hard to detect)

● DPLL is complete

Equipping agents with the power of inferencing

● Till now we only looked and how Inference can be done

● We need to integrate this power to the agent.
○ A drone inside a building in fire should:

■ Do such inference, figure out where to go and find an optimal path to its
destination

● Agent should keep track of the percept history and use it to make
inferences

Equipping agents with the power of inferencing

● The knowledge base typically includes two things
○ General rules of the framework:

■ Like when do we detect stench, Breeze, There is exactly one Wumpus, arrow
can be shot only once ….

○ Knowledge based on percept history in the current scenario:
■ There is no pit in (2,1), (3,2) is safe, Wumpus is dead, Arrow is still there …

● Typically at the start Knowledge Base contains the General Rules

● As the system evolves, Agent TELLs the KB about new information
based on percepts

● Handling Fluents

● Representing the Fluent axioms in the KB

● Hybrid Agent for Wumpus World

● Using Propositional Inferencing to make Plan

Current State of the world

● There are propositions whose truth values keeps changing as the
current state of the world changes
○ I am sensing Stench / I have an arrow / I am facing East / ….

● Fluents : Propositions whose True/False change over time

● Atemporal variables : Propositions whose True/False is fixed
○ Location (3,1) has stench / Wumpus is in (4,3) / ….

● We cannot have a single proposition for Fluents
○ It should consider the time step also

Propositions for Fluents

● KB should have the information on how fluents are updated
○ Example : If I have an arrow at time t and my action was move

forward then I will also have arrow at time t+1
○ These are called as Effect Axioms

○ (L0
1,1 ⋀ FacingEast0⋀ Forward0) ⇒ (L1

2,1 ⋀ ¬ L1
1,2 ⋀ ¬ L1

2,2 ⋀ ….)

● Handling Fluents

● Representing the Fluent axioms in the KB

● Hybrid Agent for Wumpus World

● Using Propositional Inferencing to make Plan

Frame Problem

● (L0
1,1 ⋀ FacingEast0⋀ Forward0) ⇒ (L1

2,1 ⋀ ¬ L1
1,2 ⋀ ¬ L1

2,2 ⋀ ….)

○ We need for every point (x,y) and for every time step t (we do not even
have an a priori limit on the time)

○ We need such formulas in the knowledge base for every action
Grab / Shoot / Climb / TurnLeft / ….

● There is still something unspecified:
○ We also need to say what remains unchanged

■ Example: When Forward action is performed at time t, Wumpus
Alive/Dead is unchanged

○ This is what is called the frame problem
■ In a frame (either in inertial frame of physics or movie frame)

Every action changes a few things and most things remain unchanged.

Towards lesser number of axioms

● We also need to say what fluents remains unchanged depending on the
action:
○ (Forwardt) ⇒ (haveArrowt

 ⇔ haveArrowt+1)
○ (Forwardt) ⇒ (wumpusAlivet

 ⇔ wumpusAlivet+1)

● If there are m Actions and n Fluents, how many such axioms do we need
at every time step?
○ O(mn)
○ This explosion is called : Representational frame problem

● Can we have smaller number of formulas that encodes the same
information ?

Representing Frame axioms

● Instead having axioms for each action, have one axiom for each fluent
stating when it changes:
○ haveArrowt+1

 ⇔ (haveArrowt ⋀ ¬ shoott)
○ Lt+1

1,1 ⇔ (Lt+1
1,1 ⋀ (¬ Forwardt V Bumpt)) V

 (Lt
1,2 ⋀ FacingSoutht ⋀ Forwardt) V

(Lt
2,1 ⋀ FacingWestt ⋀ Forwardt)

● This way of presenting the axioms have one formula per fluent at every
time step.

● We have O(n) formulas at every time step where n is the number of
fluents.

Qualification Problem

● Suppose we have encoded all information about the wumpus world
efficiently in our knowledge

● Use state of the art SAT solver to make inferences

● Can we be confident that our job is done?
○ Maybe not. When the agent moves forward, there might be fire!
○ We cannot anticipate everything that a drone might encounter when

it is dealing with a building on fire

● This is called the qualification problem
○ No solution using Logic
○ One possible solution : Use probability

 (Action succeeds with some probability)

● Handling Fluents

● Representing the Fluent axioms in the KB

● Hybrid Agent for Wumpus World

● Using Propositional Inferencing to make Plan

Equipping agents with the power of inferencing
Hybrid Agent

● Agent starts with a Knowledge Base containing Atemporal axioms
○ Axioms that do not depend on time steps

● At every step:
○ New percept sentence is added
○ All the axioms that depend on t are added
○ The agent uses logical inference, by ASKing questions of the knowledge

base, to work out which squares are safe and which have yet to be visited.
○ Take the most appropriate action

● Which action to be taken?
○ Should be based on priority

Hybrid Agent for Wumpus World

● If there is glitter in the current location, perform GRAB and plan to move
to the initial square and perform CLIMB

● Otherwise, choose one of the safe location that is not yet visited and plan
to move there only using safe locations.

■ This can be done using A* or other search techniques

● If there are no safe squares to explore:
○ If the agent still has an arrow try to make a safe square by shooting at

one of the possible wumpus locations.
○ Otherwise, look for a location that is not provably unsafe—that is, a

square for which ASK(KB, ¬OK) is False.
○ If there is no such square, then the mission is impossible and the

agent retreats to [1, 1] and climbs out of the cave.

