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Abstract. We consider the all pairs all shortest paths (APASP) prob-
lem, which maintains the shortest path dag rooted at every vertex in a
directed graph G = (V,E) with positive edge weights. For this problem
we present a decremental algorithm (that supports the deletion of a ver-
tex, or weight increases on edges incident to a vertex). Our algorithm
runs in amortized O(ν∗2 · logn) time per update, where n = |V |, and
ν∗ bounds the number of edges that lie on shortest paths through any
given vertex. Our APASP algorithm can be used for the decremental
computation of betweenness centrality (BC), which is widely used in the
analysis of large complex networks. No nontrivial decremental algorithm
for either problem was known prior to our work. Our method is a gen-
eralization of the decremental algorithm of Demetrescu and Italiano [3]
for unique shortest paths, and for graphs with ν∗ = O(n), we match
the bound in [3]. Thus for graphs with a constant number of shortest
paths between any pair of vertices, our algorithm maintains APASP and
BC scores in amortized time O(n2 · logn) under decremental updates,
regardless of the number of edges in the graph.

1 Introduction

Given a directed graph G = (V,E), with a positive real weight w(e) on each edge
e, we consider the problem of maintaining the shortest path dag rooted at every
vertex in V (we will refer to these as the SP dags). We use the term all-pairs
ALL shortest paths (APASP) to denote the collection of SP dags rooted at all
v ∈ V , since one can generate all the (up to exponential number of) shortest
paths in G from these dags. These dags give a natural structural property of G
which is of use in any application where several or all shortest paths need to be
examined. A particular application that motivated our work is the computation
of betweenness centrality (BC) scores of vertices in a graph [4].

In this paper we present a decremental algorithm for the APASP problem,
where each update in G either deletes or increases the weight of some edges
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incident on a vertex. Our method is a generalization of the method developed
by Demetrescu and Italiano [3] (the ‘DI’ method) for decremental APSP where
only one shortest path is needed. The DI algorithm [3] runs in O(n2 · log n)
amortized time per update, for a sufficiently long update sequence. In [3] the
result is extended to a fully dynamic algorithm that runs in O(n2 · log3 n) time,
and this result was improved to O(n2 · log2 n) amortized time by Thorup [14].
We briefly discuss the fully dynamic case at the end of our paper. In these earlier
algorithms, the unique shortest paths assumption is crucial.

In addition to APASP, our method gives decremental algorithms for the
following two problems.

Locally Shortest Paths (LSPs). For a path πxy ∈ G, we define the πxy
distance from x to y as w(πxy) =

∑
e∈πxy w(e), and the πxy length from x to y

as the number of edges in πxy. For any x, y ∈ V , d(x, y) denotes the shortest path
distance from x to y in G. A path πxy in G is a locally shortest path (LSP) [3] if
either πxy contains a single vertex, or every proper subpath of πxy is a shortest
path in G. As noted in [3], every shortest path (SP) is an LSP, but an LSP need
not be an SP (e.g., every single edge is an LSP).

The DI method maintains all LSPs in a graph with unique shortest paths,
and these are key to efficiently maintaining shortest paths under decremental
and fully dynamic updates. The decremental method we present here maintains
all LSPs for all (multiple) shortest paths in a graph.

Betweenness Centrality (BC). Betweenness centrality is a widely-used mea-
sure in the analysis of large complex networks, and is defined as follows. For any
pair x, y in V , let σxy denote the number of shortest paths from x to y in G,
and let σxy(v) denote the number of shortest paths from x to y in G that pass

through v. Then, BC(v) =
∑
s6=v,t6=v

σst(v)
σst

. This measure is often used as an
index that determines the relative importance of v in the network. Some applica-
tions of BC include analyzing social interaction networks [7], identifying lethality
in biological networks [11], and identifying key actors in terrorist networks [2, 8].
Heuristics for dynamic betweenness centrality with good experimental perfor-
mance are given in [5, 9, 13], but none of these algorithms provably improve on
the widely used static algorithm by Brandes [1], which runs in O(mn+n2 · log n)
time on any class of graphs, where m = |E|.

Recently, we gave a simple incremental BC algorithm [10], that provably
improves on Brandes’ on sparse graphs, and also typically improves on Brandes’
in dense graphs (e.g., in the setting of Theorem 2 below). In this paper, we
complement the results in [10]; however, decremental updates are considerably
more challenging (similar to APSP, as noted in [3]).

The key step in the recent incremental BC algorithm [10] is the incremental
maintenance of the APASP dags (achieved using techniques unrelated to the
current paper). After the updated dags are obtained, the BC scores can be
computed in time linear in the combined sizes of the APASP dags (plus O(n2)).
Thus, if we instead use our decremental APASP algorithm in the key step in [10],
we obtain a decremental algorithm for BC with the same bound as APASP.
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Our Results. Let ν∗ be the maximum number of edges that lie on shortest
paths through any given vertex in G; thus, ν∗ also bounds the number of edges
that lie on any single-source shortest path dag. Let m∗ be the number of edges
in G that lie on shortest paths (see, e.g., Karger et al. [6]). Our main result is
the following theorem, where we have assumed that ν∗ = Ω(n).

Theorem 1. Let Σ be a sequence of decremental updates on G = (V,E). Then,
all SP dags, all LSPs, and all BC scores can be maintained in amortized time
O(ν∗2 · log n) per update when |Σ| = Ω(m∗/ν∗).

Discussion of the Parameters. As noted in [6], it is well-known that m∗ =
O(n log n) with high probability in a complete graph where edge weights are cho-
sen from a large class of probability distributions. Since ν∗ ≤ m∗, our algorithms
will have an amortized bound of O(n2 · log3 n) on such graphs. Also, ν∗ = O(n)
in any graph with only a constant number of shortest paths between every pair
of vertices, even though m∗ can be Θ(n2) in the worst case even in graphs with
unique shortest paths. In fact ν∗ = O(n) even in some graphs that have an
exponential number of shortest paths between some pairs of vertices. In all such
cases, and more generally, when the number of edges on shortest paths through
any single vertex is O(n), our algorithm will run in amortized O(n2 · log n) time
per decremental update. Thus we have:

Theorem 2. Let Σ be a sequence of decremental updates on graphs where the
number of edges on shortest paths through any single vertex is O(n). Then, all
SP dags, all LSPs, and all BC scores can be maintained in amortized time O(n2 ·
log n) per update when |Σ| = Ω(m∗/n).

Corollary 1. If the number of shortest paths for any vertex pair is bounded
by a constant, then decremental APASP, LSPs, and BC have amortized cost
O(n2 · log n) per update when the update sequence has length Ω(m∗/n).
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Fig. 1. Graph G

Set G (before update on v)

P (x, y) {((xa1, by), 4, 1), ((xa2, by), 4, 2),

= P ∗(x, y) ((xa3, by), 4, 1)}
P (x, b1) {(xa1, vb1), 3, 1), ((xa2, vb1), 3, 1)}
P ∗(x, b1) {((xa1, vb1), 3, 1), ((xa2, vb1), 3, 1)}
L∗(v, y1) {a1, a2}
L(v, b1y1) {a1, a2}
R∗(x, v) {b, b1}
R(xa2, v) {b, b1}

Fig. 2. A subset of the tuple-system for G in Fig. 1

The DI method. Here we will use an example to give a quick review of the
DI approach [3], which forms the basis for our method. Consider the graph G in
Fig. 1, where all edges have weight 1 except for the ones with explicit weights.
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As in DI, let us assume here that G has been pre-processed to identify a
unique shortest path between every pair of vertices. In G the shortest path from
a1 to b1 is 〈a1, v, b1〉 and has weight 2, and by definition, the paths p1 = 〈a1, b1〉
and p2 = 〈a1, v1, b1〉 of weight 4 are both LSPs. Now consider a decremental
update on v that increases w(a1, v) to 10 and w(a2, v) to 5, and let G′ be
the resulting graph (see Fig. 3). In G′ both p1 and p2 become shortest paths.
Furthermore, a left extension of the path p1, namely p3 = 〈x, a1, b1〉 becomes a
shortest path from x to b1 in G′. Note that the path p3 is not even an LSP in the
graph G; however, it is obtained as a left extension of a path that has become
shortest after the update.

The elegant method of storing LSPs and creating longer LSPs by left and
right extending shortest paths is the basis of the DI approach [3]. To achieve this,
the DI approach uses a succinct representation of SPs, LSPs and their left and
right extensions using suitable data structures. It then uses a procedure cleanup
to remove from the data structures all the shortest paths and LSPs that contain
the updated vertex v, and a complementary procedure fixup that first adds all
the trivial LSPs (corresponding to edges incident on v), and then restores the
shortest paths and LSPs between all pairs of vertices. The DI approach thus
efficiently maintains a single shortest path between all pairs of vertices under
decremental updates.

In this paper we are interested in maintaining all shortest paths for all vertex
pairs and this requires several enhancements to the methods in [3]. In Section 2
we present a new tuple system which succinctly represents all LSPs in a graph
with multiple shortest paths. In the rest of the paper we present our decremental
algorithm for maintaining this tuple system, and hence for maintaining APASP
and BC scores.

2 A System of Tuples

In this section we present an efficient representation of the set of SPs and LSPs
for an edge weighted graph G = (V,E). We first define the notions of tuple and
triple.
Tuple. A tuple, τ = (xa, by), represents the set of LSPs in G, all of which use
the same first edge (x, a) and the same last edge (b, y). The weight of every path
represented by τ is w(x, a) + d(a, b) + w(b, y). We call τ a locally shortest path
tuple (LST). In addition, if d(x, y) = w(x, a) + d(a, b) + w(b, y), then τ is a
shortest path tuple (ST). Fig. 5(a) shows a tuple τ .
Triple. A triple γ = (τ, wt, count), represents the tuple τ = (xa, by) that con-
tains count > 0 number of paths from x to y, each with weight wt. In Fig. 1, the
triple ((xa2, by), 4, 2) represents two paths from x to y, namely p1 = 〈x, a2, v, b, y〉
and p2 = 〈x, a2, v2, b, y〉 both having weight 4.

Storing Locally Shortest Paths. We use triples to succinctly store all LSPs
and SPs for each vertex pair in G. For x, y ∈ V , we define:

P (x, y) = {((xa, by), wt, count): (xa, by) is an LST from x to y in G}
P ∗(x, y) = {((xa, by), wt, count): (xa, by) is an ST from x to y in G}.
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Note that all triples in P ∗(x, y) have the same weight. We will use the term LST
to denote either a locally shortest tuple or a triple representing a set of LSPs,
and it will be clear from the context whether we mean a triple or a tuple.
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Fig. 3. Graph G′

Set G′ (with w(a1, v) = 10, w(a2, v) = 5)

P (x, y) {((xa2, by), 4, 1), ((xa3, by), 4, 1)}
= P ∗(x, y)

P (x, b1) {((xa1, v1b1), 5, 1), ((xa2, vb1), 7, 1),

((xa1, a1b1), 5, 1)}
P ∗(x, b1) {((xa1, v1b1), 5, 1), ((xa1, a1b1), 5, 1)}
L∗(v, y1) {a2}
L(v, b1y1) {a2}
R∗(x, v) ∅
R(xa2, v) {b1}

Fig. 4. A subset of the tuple-system for G′

Left Tuple and Right Tuple. A left tuple (or `-tuple), τ` = (xa, y), represents
the set of LSPs from x to y, all of which use the same first edge (x, a). The weight
of every path represented by τ` is w(x, a) + d(a, y). If d(x, y) = w(x, a)+d(a, y),
then τ` represents the set of shortest paths from x to y, all of which use the first
edge (x, a). A right tuple (r-tuple) τr = (x, by) is defined analogously. Fig. 5(b)
and Fig. 5(c) show a left tuple and a right tuple respectively. In the following,
we will say that a tuple (or `-tuple or r-tuple) contains a vertex v, if at least one
of the paths represented by the tuple contains v.

x
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y

(a) tuple τ = (xa, by)

x

a

y

(b) `-tuple τ` = (xa, y)

x

b

y

(c) r-tuple τr = (x, by)

Fig. 5. Tuples

ST and LST Extensions. For a shortest path r-tuple τr = (x, by), we define
L(τr) to be the set of vertices which can be used as pre-extensions to create
LSTs in G. Similarly, for a shortest path `-tuple τ` = (xa, y), R(τ`) is the set of
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vertices which can be used as post-extensions to create LSTs in G. We do not
define R(τr) and L(τ`). So we have:

L(x, by) = {x′ : (x′, x) ∈ E(G) and (x′x, by) is an LST in G}
R(xa, y) = {y′ : (y, y′) ∈ E(G) and (xa, yy′) is an LST in G}.

For x, y ∈ V , L∗(x, y) denotes the set of vertices which can be used as pre-
extensions to create shortest path tuples in G; R∗(x, y) is defined symmetrically:

L∗(x, y) = {x′ : (x′, x) ∈ E(G) and (x′x, y) is a `-tuple representing SPs in G}
R∗(x, y) = {y′ : (y, y′) ∈ E(G) and (x, yy′) is an r-tuple representing SPs in G}.

Fig. 2 shows a subset of these sets for the graph G in Fig. 1.

Key Deviations from DI [3]. The assumption of unique shortest paths in
[3] ensures that τ = (xa, by), τ` = (xa, y), and τr = (x, by) all represent exactly
the same (single) locally shortest path. However, in our case, the set of paths
represented by τ` and τr can be different, and τ is a subset of paths represented
by τ` and τr. Our definitions of ST and LST extensions are derived from the
analogous definitions in [3] for SP and LSP extensions of paths. For a path
π = x→ a b→ y, DI defines sets L, L∗, R and R∗. In our case, the analog of
a path π = x → a  b → y is a tuple τ = (xa, by), but to obtain efficiency, we
define the set L only for an r-tuple and the setR only for an `-tuple. Furthermore,
we define L∗ and R∗ for each pair of vertices.

In the following two lemmas we bound the total number of tuples in the graph
and the total number of tuples that contain a given vertex v. These bounds also
apply to the number of triples since there is exactly one triple for each tuple in
our tuple system.

Lemma 1. The number of LSTs in G = (V,E) is bounded by O(m∗ · ν∗).

Proof. For any LST (×a,××), for some a ∈ V , the first and last edge of any such
tuple must lie on a shortest path containing a. Let E∗a denote the set of edges that
lie on shortest paths through a, and let Ia be the set of incoming edges to a. Then,
there are at most ν∗ ways of choosing the last edge in (×a,××) and at most
E∗a ∩ Ia ways of choosing the first edge in (×a,××). Since

∑
a∈V |E∗a ∩ Ia| = m∗,

the number of LSTs in G is at most
∑
a∈V ν

∗ · |E∗a ∩ Ia| ≤ m∗ · ν∗. ut

Lemma 2. The number of LSTs that contain a vertex v is O(ν∗2).

Proof. We distinguish three different cases:
1. Tuples starting with v: for a tuple that starts with edge (v, a), the last

edge must lie on a’s SP dag, so there are at most ν∗ choices for the last edge.
Hence, the number of tuples with v as start vertex is at most

∑
a∈V \v ν

∗ ≤ n ·ν∗.
2. Similarly, the number of tuples with v as end vertex is at most n · ν∗.
3. For any tuple τ = (xa, by) that contains v as an internal vertex, both (x, a)

and (b, y) lie on a shortest path through v, hence the number of such tuples is
at most ν∗2. ut
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3 Decremental Algorithm

Here we present our decremental APASP algorithm. Recall that a decremental
update on a vertex v either deletes or increases the weights of a subset of edges
incident on v. We begin with the data structures we use.
Data Structures. For every x, y, x 6= y in V , we maintain the following:

1. P (x, y) – a priority queue containing LSTs from x to y with weight as key.
2. P ∗(x, y) – a priority queue containing STs from x to y with weight as key.
3. L∗(x, y) – a balanced search tree containing vertices with vertex ID as key.
4. R∗(x, y) – a balanced search tree containing vertices with vertex ID as key.

For every `-tuple we have its right extension, and for every r-tuple its left
extension. These sets are stored as balanced search trees (BSTs) with the vertex
ID as a key. Additionally, we maintain all tuples in a BST dict, with a tuple τ =
(xa, by) having key [x, y, a, b]. We also maintain pointers from τ to R(xa, y) and
L(x, by), and to the corresponding triple containing τ in P (x, y), (and in P ∗(x, y)
if (xa, by) is an ST). Finally, we maintain a sub-dictionary of dict called Marked-
Tuples (explained below). Marked-Tuples, unlike the other data structures, is
specific only to one update.
The Algorithm. Given the updated vertex v and the updated weight function
w′ over all the incoming and outgoing edges of v, the decremental algorithm
performs two main steps cleanup and fixup, as in DI. The cleanup procedure
removes from the tuple system every LSP that contains the updated vertex v.
The following definition of a new LSP is from DI [3].

Definition 1. A path that is shortest (locally shortest) after an update to vertex
v is new if either it was not an SP (LSP) before the update, or it contains v.

The fixup procedure adds to the tuple system all the new shortest and locally
shortest paths. In contrast to DI, recall that we store locally shortest paths in
P and P ∗ as triples. Hence removing or adding paths implies decrementing or
incrementing the count in the relevant triple; thus a triple is removed or added
only if its count goes down to zero or up from zero. Moreover, new tuples may
be created through combining several existing tuples. Some of the updated data
structures for the graph G′ in Fig. 3, obtained after a decremental update on v
in the graph G in Fig. 1, are schematized in Fig. 4.

3.1 The Cleanup Procedure

Alg. 1 (cleanup) uses an initially empty heap Hc of triples. It also initializes the
empty dictionary Marked-Tuples. The algorithm then creates the trivial triple
corresponding to the vertex v and adds it to Hc (Step 2, Alg. 1). For a triple
((xa, by), wt, count) the key in Hc is [wt, x, y]. The algorithm repeatedly extracts
min-key triples from Hc (Step 4, Alg. 1) and processes them. The processing of
triples involves left-extending (Steps 5–17, Alg. 1) and right-extending triples
(Step 18, Alg. 1) and removing from the tuple system the set of LSPs thus
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formed. This is similar to cleanup in DI. However, since we deal with a set of
paths instead of a single path, we need significant modifications, of which we now
highlight two: (i) Accumulation used in Step 4 and (ii) use of Marked-Tuples in
Step 7 and Step 11.

Algorithm 1 cleanup(v)
1: Hc ← ∅; Marked-Tuples ← ∅
2: γ ← ((vv, vv), 0, 1); add γ to Hc
3: while Hc 6= ∅ do
4: extract in S all the triples with min-key [wt, x, y] from Hc
5: for every b such that (x×, by) ∈ S do
6: let fcount′ =

∑
i cti such that ((xai, by), wt, cti) ∈ S

7: for every x′ ∈ L(x, by) such that (x′x, by) /∈ Marked-Tuples do
8: wt′ ← wt+ w(x′, x); γ′ ← ((x′x, by), wt′, fcount′); add γ′ to Hc
9: remove γ′ in P (x′, y) // decrements count by fcount

10: if a triple for (x′x, by) exists in P (x′, y) then
11: insert (x′x, by) in Marked-Tuples
12: else
13: delete x′ from L(x, by) and delete y from R(x′x, b)
14: if a triple for (x′x, by) exists in P∗(x′, y) then
15: remove γ′ in P∗(x′, y) // decrements count by fcount
16: if P∗(x, y) = ∅ then delete x′ from L∗(x, y)
17: if P∗(x′, b) = ∅ then delete y from R∗(x′, b)
18: perform symmetric steps 5 – 17 for right extensions

Accumulation. In Step 4 we extract a collection S of triples all with key
[wt, x, y] from Hc and process them together in that iteration of the while loop.
Assume that for a fixed last edge (b, y), S contains triples of the form (xat, by),
for t = 1, . . . , k. Our algorithm processes and left-extends all these triples with
the same last edge together. This ensures that, for any x′ ∈ L(x, by), we generate
the triple (x′x, by) exactly once. The accumulation is correct because any valid
left extension for a triple (xai, by) is also a valid left extension for (xaj , by) when
both triples have the same weight.

Marked-Tuples. The dictionary of Marked-Tuples is used to ensure that every
path through the vertex v is removed from the tuple system exactly once and
therefore counts of paths in triples are correctly maintained. Note that a path of
the form (xa, by) can be generated either as a left extension of (a, by) or by a right
extension of (xa, b). This is true in DI as well. However, due to the assumption of
unique shortest paths they do not need to maintain counts of paths, and hence
do not require the book-keeping using Marked-Tuples.

3.1.1 Complexity and Correctness. Lemma 3 establishes the correctness
of Alg. 1 and can be proved using a suitable loop invariant for the while loop in
Step 3. The time bound in Lemma 4 follows from Lemma 2 since every triple
examined in cleanup has at least one path that contains v.

Lemma 3. After Alg. 1 is executed, the counts of triples in P (P ∗) repre-
sent counts of LSPs (SPs) in G that do not pass through v. Moreover, the sets
L,L∗, R,R∗ are correctly maintained.

Lemma 4. For an update on a vertex v, Alg. 1 takes O(ν∗2 · log n) time.
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3.2 The Fixup Procedure

The goal of the fixup procedure is to add to the tuple system all new shortest
and locally shortest paths (recall Definition 1).

The fixup procedure (pseudo-code in Alg. 2) works with a heap of triples
(Hf here), which is initialized with a candidate shortest path triple for each pair
of vertices. The algorithm repeatedly extracts the set of triples with minimum
key and processes them. The main invariant for the algorithm (similar to DI [3])
is that for a pair x, y, the weight of the first set of triples extracted from Hf

gives the distance from x to y in the updated graph. Thus, these triples are
all identified as shortest path triples, and we need to extend them if in fact
they represent new shortest paths. To readily identify triples containing paths
through v we use some additional book-keeping: for every triple γ we store the
update number (update-num(γ)) and a count of the number of paths in that
triple that pass through v (paths(γ, v)). Finally, similar to cleanup, the fixup
procedure also left and right extends triples to create triples representing new
locally shortest paths.

Alg. 2 initializes Hf in Steps 2–5 as follows. (i) For every edge incident on
v, it creates a trivial triple γ which is inserted into Hf and P . It also sets
update-num(γ) and paths(γ, v) for each such γ; (ii) For every x, y ∈ V , it adds a
candidate min-weight triple from P (x, y) to Hf (even if P (x, y) contains several
min-weight triples; this is done for efficiency).

Alg. 2 executes Steps 10–17 when for a pair x, y, the first set of triples S′, all
of weight wt, are extracted from Hf . We claim (Invariant 3) that wt denotes the
shortest path distance from x to y in the updated graph. The goal of Steps 10–17
is to create a set S of triples that represent new shortest paths, and this step is
considerably more involved than the corresponding step in DI. In DI [3], only a
single path p is extracted from Hf possibly resulting in a new shortest path from
x to y. If p is new then it is added to P ∗ and the algorithm extends it to create
new LSP. In our case, we extract not just multiple paths but multiple shortest
path triples from x to y, and some of these triples may not be in Hf . We now
describe how our algorithm generates the new shortest paths in Steps 10–17.
Steps 10–17, Alg. 2 – As mentioned above, Steps 10–17 create a set S of triples
that represent new shortest paths. There are two cases.

– P ∗(x, y) is empty: Here, we process the triples in S′, but in addition, we may
be required to process triples of weight wt from the set P (x, y). To see this,
consider the example in Fig. 1 and consider the pair a1, b1. In G, there is
one shortest path 〈a1, v, b1〉 which is removed from P (a1, b1) and P ∗(a1, b1)
during cleanup. In G′, d(a1, b1) = 4 and there are 2 shortest paths, namely
p1 = 〈a1, b1〉 and p2 = 〈a1, v1, b1〉. Note that both of these are LSPs in G
and therefore are present in P (a1, b1). In Step 5, Alg. 2 we insert exactly one
of them into the heap Hf . However, both need to be processed and also left
and right extended to create new locally shortest paths. Thus, under this
condition, we examine all the min-weight triples present in P (a1, b1).

– P ∗(x, y) is non-empty: After a decremental update, the distance from x to
y can either remain the same or increase, but it cannot decrease. Further,
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cleanup removed from the tuple system all paths that contain v. Hence, if
P ∗(x, y) is non-empty at this point, it implies that all paths in P ∗(x, y) avoid
v. In this case, we can show (Invariant 4) that it suffices to only examine the
triples present in Hf . Furthermore, the only paths that we need to process
are the paths that pass through the vertex v.

Steps 19–29, Alg. 2 – These steps left-extend and right-extend the triples in S
representing new shortest paths from x to y.

Algorithm 2 fixup(v,w′)
1: Hf ← ∅; Marked-Tuples ← ∅
2: for each edge incident on v do
3: create a triple γ; set paths(γ, v) = 1; set update-num(γ); add γ to Hf and to P ()
4: for each x, y ∈ V do
5: add a min-weight triple from P (x, y) to Hf
6: while Hf 6= ∅ do
7: extract in S′ all triples with min-key [wt, x, y] from Hf ; S ← ∅
8: if S′ is the first extracted set from Hf for x, y then
9: {Steps 10–17: add new STs (or increase counts of existing STs) from x to y.}

10: if P∗(x, y) is empty then
11: for each γ′ ∈ P (x, y) with weight wt do
12: let γ′ = ((xa′, b′y), wt, count′)
13: add γ′ to P∗(x, y) and S; add x to L∗(a′, y) and y to R∗(x, b′)
14: else
15: for each γ′ ∈ S′ containing a path through v do
16: let γ′ = ((xa′, b′y), wt, count′)
17: add γ′ with paths(γ′, v) in P∗(x, y) and S; add x to L∗(a′, y) and y to R∗(x, b′)
18: {Steps 19–28: add new LSTs (or increase counts of existing LSTs) that extend SPs from

x to y.}
19: for every b such that (x×, by) ∈ S do
20: let fcount′ =

∑
i cti such that ((xai, by), wt, cti) ∈ S

21: for every x′ in L∗(x, b) do
22: if (x′x, by) /∈ Marked-Tuples then
23: wt′ ← wt+ w(x′, x); γ′ ← ((x′x, by), wt′, fcount′)
24: set update-num(γ′); paths(γ′, v)←

∑
γ=(x×,by) paths(γ, v); add γ′ to Hf

25: if a triple for (x′x, by) exists in P (x′, y) then
26: add γ′ with paths(γ′, v) in P (x′, y); add (x′x, by) to Marked-Tuples
27: else
28: add γ′ to P (x′, y); add x′ to L(x, by) and y to R(x′x, b)
29: perform steps symmetric to Steps 19 – 28 for right extensions.

Fixup maintains the following invariants. Invariant 3 is proved similarly to
Invariant 3.1 in [3]. The proof of Invariant 4 requires a careful analysis of various
cases to show that indeed all new shortest paths are inserted into the set S.
Finally, Lemma 5 is proved using a suitable loop invariant for the while loop in
Step 6 of Alg. 2.

Invariant 3 If the set S′ in Step 7 of Alg. 2 is the first extracted set from Hf

for x, y, then the weight of each triple in S′ is the shortest path distance from x
to y in the updated graph.

Invariant 4 The set S of triples constructed in Steps 10–17 of Alg. 2 represents
all of the new shortest paths from x to y.

Lemma 5. After execution of Alg. 2, for any (x, y) ∈ V , the counts of the triples
in P (x, y) and P ∗(x, y) represent the counts of LSPs and SPs from x to y in the
updated graph. Moreover, the sets L,L∗, R,R∗ are correctly maintained.
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3.2.1 Complexity of Fixup. As in DI, we observe that shortest paths and
LSPs are removed only in cleanup and are added only in fixup. In a call to fixup,
accessing a triple takes O(log n) time since it is accessed on a constant number
of data structures. So, it suffices to bound the number of triples accessed in a
call to fixup, and then multiply that bound by O(log n).

We will establish an amortized bound. The total number of LSTs at any time,
including the end of the update sequence, is O(m∗ · ν∗) (by Lemma 1). Hence,
if fixup accessed only new triples outside of the O(n2) triples added initially to
Hf , the amortized cost of fixup (for a long enough update sequence) would be
O(ν∗2 · log n), the cost of a cleanup. This is in fact the analysis in DI, where fixup
satisfies this property. However, in our algorithm fixup accesses several triples
that are already in the tuple system: In Steps 11–13 we examine triples already
in P , in Steps 15–17 we could increment the count of an existing triple in P ∗,
and in Steps 19–28 we increment the count of an existing triple in P . We bound
the costs of these steps in Lemma 6 below by classifying each triple γ as one of
the following disjoint types:

– Type-0 (contains-v): γ represents at least one path containing vertex v.
– Type-1 (new-LST): γ was not an LST before the update but is an LST

after the update, and no path in γ contains v.
– Type-2 (new-ST-old-LST): γ is an ST after the update, and γ was an

LST but not an ST before the update, and no path in γ contains v.
– Type-3 (new-ST-old-ST): γ was an ST before the update and continues

to be an ST after the update, and no path in γ contains v.
– Type-4 (new-LST-old-LST): γ was an LST before the update and con-

tinues to be an LST after the update, and no path in γ contains v.

The following lemma establishes an amortized bound for fixup which is the
same as the worst case bound for cleanup. This proves Theorem 1.

Lemma 6. The fixup procedure takes time O(ν∗2 · log n) amortized over a se-
quence of Ω(m∗/ν∗) decremental-only updates.

Proof. We bound the number of triples examined; the time taken is O(log n)
times the number of triples examined due to the data structure operations per-
formed on a triple. The initialization in Steps 1–5 takes O(n2) time. We now
consider the triples examined after Step 5. The number of Type-0 triples is
O(ν∗2) by Lemma 2. The number of Type-1 triples is addressed by amortiz-
ing over the entire update sequence as described in the paragraph below. For
Type-2 triples we observe that since updates only increase the weights on edges,
a shortest path never reverts to being an LSP. Further, each such Type-2 triple
is examined only a constant number of times (in Steps 10–13). Hence we charge
each access to a Type-2 triple to the step in which it was created as a Type-1
triple. For Type-3 and Type-4, we note that for any x, y we add exactly one can-
didate min-weight triple from P (x, y) to Hf , hence initially there are at most n2

such triples in Hf . Moreover, we never process an old LST which is not an ST
so no additional Type-4 triples are examined during fixup. Finally, triples in P ∗
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that are not placed initially in Hf are not examined in any step of fixup, so no
additional Type-3 triples are examined. Thus the number of triples examined by
a call to fixup is O(ν∗2) plus O(X), where X is the number of new triples fixup
adds to the tuple system. (This includes an O(1) credit placed on each new LST
for a possible later conversion to an ST.)

Let σ be the number of updates in the update sequence. Since triples are
removed only in cleanup, at most O(σ ·ν∗2) triples are removed by the cleanups.
There can be at most O(m∗ · ν∗) triples remaining at the end of the sequence
(by Lemma 1), hence the total number of new triples added by all fixups in
the update sequence is O(σ · ν∗2 + m∗ · ν∗). When σ > m∗/ν∗, the first term
dominates, and this gives an average of O(ν∗2) triples added per fixup, and the
desired amortized time bound for fixup. ut

Discussion. We have presented an efficient decremental algorithm to main-
tain all-pairs all shortest paths (APASP). The space used by our algorithm is
O(m∗ · ν∗), the worst case number of triples in our tuple system. By using this
decremental APASP algorithm in place of the incremental APASP algorithm
used in [10], we obtain a decremental algorithm for maintaining BC scores with
the same bound.

Very recently, two of the authors have obtained a fully dynamic APASP
algorithm [12] that combines elements in the fully dynamic APSP algorithms in
[3] and [14], while building on the results in the current paper. When specialized
to unique shortest paths (i.e., APSP), this algorithm is about as simple as the
one in [3] and matches its amortized bound.
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