
CS 7015 - Deep Learning - Programming Assignment 1 (Backpropagation)

In this assignment you need to implement a feedforward neural network in python (we
strongly recommend using numpy for all matrix/vector operations). This network will be
trained and tested using the MNIST handwritten digit recognition dataset 1. Specifically,
given an input image (28 x 28 = 784 pixels) from the MNIST dataset, the network will be
trained to classify the image into 1 of 10 classes (10 digits). Your implementation should
support the use of the following hyper-parameters/options :

• --lr (initial learning rate η for gradient descent based algorithms)

• --momentum (momentum to be used by momentum based algorithms)

• --num hidden (number of hidden layers - this does not include the 784 dimensional
input layer and the 10 dimensional output layer)

• --sizes (a comma separated list for the size of each hidden layer)

• --activation (the choice of activation function - valid values are tanh/sigmoid)

• --loss (possible choices are squared error[sq] or cross entropy loss[ce])

• --opt (the optimization algorithm to be used: gd, momentum, nag, adam - you will be
implementing the mini-batch version of these algorithms)

• --batch size (the batch size to be used - valid values are 1 and multiples of 5)

• --anneal (if true the algorithm should halve the learning rate if at any epoch the
validation loss decreases and then restart that epoch)

• --save dir (the directory in which the pickled model should be saved - by model we
mean all the weights and biases of the network)

• --expt dir (the directory in which the log files will be saved - see below for a detailed
description of which log files should be generated)

• --mnist (path to the mnist data in pickeled format 2)

You should use the argparse module in python for parsing these parameters.

Instructions:

• You need to submit the source code for the assignment. Your code should include one
file called train.py which should be runnable using the following command:

python train.py --lr 0.01 --momentum --0.5 --num hidden 3 --sizes 100,100,100 --activation
sigmoid --loss sq --opt adam --batch size 20 --anneal true --save dir /home/mitesh/pa1
--expt dir /home/mitesh/pa1/exp1
--mnist /home/mitesh/pa1/data/mnist.pkl.gz

1http://deeplearning.net/tutorial/gettingstarted.html
2in the same format as available here http://deeplearning.net/data/mnist/mnist.pkl.gz

http://deeplearning.net/tutorial/gettingstarted.html
http://deeplearning.net/data/mnist/mnist.pkl.gz


Of course, the actual values for the options can change (for example, we could try
different learning rates, momentums, optimization algorithms, etc.). For the remainder
of this document we will assume that the above command is saved as a shell script in
run.sh (from now on if we refer to run.sh then it means we are referring to the above
command).

• The mnist.pkl.gz file available at the above mentioned url contains 70000 MNIST
images split into a train (50000), valid (10000) and test set (10000). Refer to this url3

to see how to read this pickled file.

• Your code should create the following log files: log loss train.txt, log loss valid.txt,
log loss test.txt, log err train.txt, log err valid.txt, log err test.txt in the expt dir.

• The log loss *.txt files should contain the loss (squared error or cross entropy as speci-
fied) on the train/valid/test data respectively after every 100 steps (refer to the Lecture
slides for the definition of a step). Each log loss *.txt should contain only the following
lines:

Epoch 0, Step 100, Loss: 〈value〉, lr: 0.01
Epoch 0, Step 200, Loss: 〈value〉, lr: 0.01
Epoch 0, Step 300, Loss: 〈value〉, lr: 0.01
Epoch 0, Step 400, Loss: 〈value〉, lr: 0.01
...
...
Epoch 1, Step 100, Loss: 〈value〉, lr: 0.01
...
...
Epoch 2, Step 100, Loss: 〈value〉, lr: 0.01
...
...
Epoch 〈max epoch〉, Step 100, Loss: 〈value〉, lr: 0.01
...
...
(where lr is the learning rate which may change if you use annealing)

You need to strictly adhere to the above format. These log files will be parsed using a
script which can parse only those strings which fit the above pattern. If your log file
does not adhere to this pattern or contains any additional lines then you will get a 0
on the assignment.

• The log err *.txt files should contain the error rate (i.e., percentage of examples which
were classified incorrectly) on the train/valid/test data respectively after every 100
steps (refer to the Lecture slides for the definition of a step). Each log err *.txt should
contain only the following lines:

3http://deeplearning.net/tutorial/gettingstarted.html

Page 2



Epoch 0, Step 100, Error: 〈value〉, lr: 0.01
Epoch 0, Step 200, Error: 〈value〉, lr: 0.01
Epoch 0, Step 300, Error: 〈value〉, lr: 0.01
Epoch 0, Step 400, Error: 〈value〉, lr: 0.01
...
...
Epoch 1, Step 100, Error: 〈value〉, lr: 0.01
...
...
Epoch 1, Step 100, Error: 〈value〉, lr: 0.01
...
...
Epoch 〈max epoch〉, Step 100, Error: 〈value〉, lr: 0.01
...
...
(Error can take on a real value between 0 to 100 but round it off to two decimal places)

You need to strictly adhere to the above format. These log files will be parsed using a
script which can parse only those strings which fit the above pattern. If your log file
does not adhere to this pattern or contains any additional lines then you will get a 0
on the assignment.

• In addition, your code should also generate a valid predictions.txt and test predictions.txt
file in the expt dir. Each of these files should contain 10K lines. Each line should con-
tain the predicted label of the corresponding test/valid image. Here’s what a sample
valid predictions.txt file would look like:
9
3
0
2
7
...
...

• Notice that you will have to initialize the weights of the network randomly. To ensure
replicability of your results make sure that you set numpy.random.seed(1234) before
initializing the weights and biases. If you don’t do this we may get very different results
when we run your code after submission.

• We anticipate that some of you may not be able to support all values of hyperparam-
eters mentioned above. To help us evaluate only those options which are supported
by your code you need to submit a file (supported.txt) listing the supported options
for the following hyperparameters: anneal, opt, loss, activation. For example, if you
have supported all possibles option for these hyperparameters then supported.txt will

Page 3



contain the following contents:
--anneal: true,false
--opt: gd,momentum,nag,adam
--loss: sq,ce
--activation: tanh,sigmoid

However, if your code does not support tanh activation and adam and squared er-
ror loss then supported.txt will contain the following contents:
--anneal: true,false
--opt: gd,momentum,nag
--loss: ce
--activation: sigmoid
Again, the contents of this file should be exactly in the format specified above.

• You need a single tar.gz file containing the following:

– train.py

– run.sh (containing the best hyperparameters)

– any other python scripts that you have written

– supported.txt (as described above)

The tar.gz should be named as <RollNo1> <RollNo2> backprop.tgz if there are two
team members or as <RollNo> backprop.tgz if you are doing the assignment alone.

Evaluation:

• Your task is to achieve an error rate of ≤ 1% on the test data. You will be evaluated
based on how close you get to achieving this error rate.

• Along with the source code you need to submit a run.sh file containing the command
(with hyperparameters) that gave you the lowest error rate on the test set.

• In addition, we will also run your code using different hyperparameter configurations
(for example, number of hidden layers, size of hidden layers, etc.). You will then be
evaluated based on how good/bad your performance is compared to the performance
of other teams on different hyperparameter configurations.

• And of course, you will also be evaluated based on which of the specified hyperparam-
eters are supported correctly by your code.

Page 4


