
In this assignment you will train and test a convolutional neural network for image classifi-
cation using the CIFAR-10 dataset. We will use a variation of the VGG-network proposed
in Very Deep Convolutional Networks For Large-scale Image Recognition (Simonyan, Zisser-
man; 2015).

Instructions

• Download the CIFAR-10 dataset from http://www.cs.toronto.edu/~kriz/cifar.

html

• Using tensorflow, train a convolutional neural network whose convolution filters are all
of size 3 × 3. The overall structure of the network is as follows:

(a) CONV1: convolutional layer with 3 inputs (RGB), 64 outputs (filter size is thus
64 × 3 × 3 × 3)

(b) POOL1: 2 × 2 max-pooling layer

(c) CONV2: convolutional layer with 64 outputs, 128 outputs (filter size 128 × 64
× 3 × 3)

(d) POOL2: 2 × 2 max-pooling layer

(e) CONV3: convolutional layer with 128 inputs, 256 outputs

(f) CONV4: convolutional layer with 256 inputs, 256 outputs

(g) POOL3: 2 × 2 max-pooling layer

(h) FC1: fully connected layer with 256 inputs, 1024 outputs

(i) FC2: fully connected layer with 1024 inputs, 1024 outputs

(j) SOFTMAX: softmax layer for classification: 1024 inputs, 10 outputs

• For all convolution layers, stride S = 1, padding P = 1

• All layers, except for the pooling layers and for the last (softmax-)layer should use
ReLU-nonlinearities.

• Train the network using Adam with momentum using 45000 randomly sampled exam-
ples from the training dataset. Use the remaining 5000 examples for validation.

• Use batch-normalization on the last layer activations (immediately before computing
the softmax) when training the network.

• It will be necessary to experiment with learning rate and different parameter initial-
izations (Xavier, He etc.) to find settings that are stable and yield good solutions.

• Use early stopping using the validation set with a patience of 5 epochs.

• Your code should support the following options:

– --lr (initial learning rate η for gradient descent based algorithms)

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html


– --batch size (the batch size to be used - valid values are 1 and multiples of 5)

– --init (the initialization method to be used - 1 for Xavier, 2 for He)

– --save dir (the directory in which the pickled model should be saved - by model
we mean all the weights and biases of the network)

You should use the argparse module in python for parsing these parameters.

• The task is to get an accuracy of 90% on the test data.

Submission Instructions:

• You need to submit the source code for the assignment. Your code should include one
file called train.py which should be runnable using the following command:

python train.py --lr 0.01 --batch size 20 --init 1 --save dir <some dir>

All other supporting files used for generating plots, etc. should also be placed in the
zip file.

• Prepare a report containing the following:

– A plot of the learning curve showing iterations on the x-axis and negative log
likelihood over labels on the y-axis. Make a single plot showing both the training
loss and the validation loss.

– The performance on the test data of the model that performs best on the valida-
tion data.

– The parameter setting which gave you the best results.

– Write down the dimensions of the input and output at each layer (for example,
the input to CONV1 layer is 3 × 32 × 32)

– Exactly how many parameters does your network have? How many of these are
in the fully connected layers and how many are in the convolutional layers?

– Exactly how many “neurons” does your network have? How many of these are in
the fully connected layers and how many are in the convolutional layers?

– What was the effect of using batch normalization ?

– Plot all the 64 layer 1 filters in an 8 × 8 grid. Do you observe any interesting
patterns?

Page 2


