
CS 7015 - Deep Learning - Quiz 1

Instructions: You need not necessarily attempt the questions in a linear order :-)

1. (1 Mark) Prove Pythagoras’ Theorem.

2. A model is said to be identifiable if a sufficiently large training set can rule out all
but one setting of the model’s parameters (in other words, you will be able to find a
unique solution which minimizes a cost function). Models which have hidden variables
(for example, deep neural networks containing hidden layers) are often not identifiable
because we can obtain equivalent models (which give the same output) using a simple
trick.

(a) (2 Marks) Suggest such a method for deep neural networks containing hidden
layers with sigmoid activations ?

(b) (1 Mark) Given a network with m hidden layers and n sigmoid neurons per layer
how many equivalent models will you get using the above method ?

(c) (2 Marks) If the deep neural network contains relu activations then suggest a
method which will give you infinite equivalent models (provided that the cost func-
tion depends only on the model’s output)

(d) (1 Mark) The above discussion suggests that the objective function of a deep
neural network with hidden variables could have multiple local minima (multiple
solutions). In other words the objective function is non-convex. Argue why this
kind of non-convexity resulting from the discussion above is not a problem.

3. Consider an overcomplete autoencoder containing one hidden layer with logistic acti-
vations. We discussed that overcomplete autoencoders could suffer from the problem
of overfitting. In particular, they can simply learn to copy the input to some units in
the hidden layer and then copy these units to the output layer. Typically, adding some
regularization solves the above problem.

(a) (1 Mark) Justify why one would use an overcomplete autoencoder instead of an
undercomplete autoencoder ?

(b) (1 Mark) Typically, it is observed that using L2 regularization in this case helps in
preventing overfitting. On further investigation, we find that the weights connecting
the hidden layer to the output layer are actually very large in the absence of regu-
larization. Comment on the corresponding observation for the weights connecting
the input layer to the hidden layer. Would they be large or small ?

(c) (2 Marks) Explain your answer.

4. We saw two kinds of oscillations in gradient descent based approaches. The first kind
resulting from the aggressive nature of momentum and nag (because of which they end
up taking a lot of u-turns). The second type of oscillations were seen in the stochastic
versions of these algorithms because of greedy estimates. This question is about the
second type of oscillations.



(a) (1 Mark) All other things remaining equal, would momentum based stochastic
gradient descent have more or fewer oscillations than vanilla stochastic gradient
descent.

(b) (2 Marks) Explain your answer.

5. We saw that any boolean function of n variables can be represented by a neural network
containing an input layer with n neurons, one hidden layer with 2n neurons and one
output layer with 1 neuron.

(a) (2 Marks) Suggest a scheme using which any function of n variables can be rep-
resented by a neural network containing an input layer with n neurons, one hidden
layer with at most 2n−1 neurons, an optional second hidden layer with at most 1
neuron and one output layer with 1 neuron? (Hint: any boolean function can be
represented as a sum of product of its variables)

(b) (1 Mark) Using the above scheme, draw a neural network which can represent the
XOR function of 3 variables using an input layer with 3 neurons, one hidden layer
with at most 4 neurons and one output layer with 1 neuron?

6. (1 Mark) Prove that the solution to the following optimization problem is given by the
dominant eigen vector of A:

max
x

x>Ax

s.t. ||x||2 = 1

7. (2 Marks) Consider the standard least-squares linear regression problem : Ax = b,
where x is an unknown which needs to be learned. The solution to this problem is given
by x = (A>A)−1(A>b). We will assume that A>A is invertible and A is a full rank
matrix. Computing the inverse of A>A could still be expensive. Assume that you have
access to a magic box which can compute all the eigen vectors and eigen values of a
matrix in O(1) time (hence the name magic box). Using this magic box suggest a way
of computing the product (A>A)−1A>?

8. Stochastic Gradient Descent is agnostic to the importance of individual features of the
input data. The update for each dimension uses the same learning rate. In situations
where we have sparse data, we notice that the sparse features get fewer updates and
if the feature turns out to be important to the task at hand, we might not be optimal
w.r.t. the updates. AdaGrad solves this problem by letting us make dimension specific
updates. Specifically, the update equation for AgaGrad is given by

vt = vt−1 + (∇wt)
2

u = − η√
vt−1 + ε

∇wt

wt = wt−1 + u

Page 2



where w is one specific dimension and vt is the history of gradients w.r.t. w and η is
some constant learning rate.

(a) (1 Mark) The denominator vt−1+ε is a strictly non-decreasing function. This ends
up killing the rate of update for frequent parameters. Modify the update equation
for vt to circumvent this issue ?

(b) (1 Mark) The units of the update u is inconsistent with the units of w. Explain
why ? (you can ignore ε for now)

(c) (2 Marks) Suggest a modification to the update to make the dimensions consistent
while remaining faithful to the original goal of adapting the learning rate for each
dimension. (Hint: Think along the lines of momentum method)

9. We intend to solve the following equation

Ax = b

The solution x∗ = A−1b, can be potentially expensive to compute because of the inversion
of the matrix A. We consider a method called Jacobi iterations and start by writing
A = D + E where D is a diagonal matrix with entries from the diagonal of A and E is
matrix of non-diagonal entries of A.

Dx = −Ex+ b

x = −D−1Ex+D−1b

x = Lx+m where L = −D−1E m = D−1b

Assume that if λd is the dominant eigen value of L then |λd| < 1.

(a) (2 Marks) Construct an iterative update procedure to solve the above problem.
(Write an update equation for xi )

(b) (1 Mark) What is the condition for convergence ? (In terms of xi, xi+1)

(c) (1 Mark) Prove that the true solution x∗ is obtained on convergence.

(d) (1 Mark) From part (b) argue that the procedure is independent of the starting
point x0.

10. Batch normalization(BN) layer normalizes the inputs to zero mean and unit variance. A
batch normalization layer takes in activations at a layer l and maps them to normalized
activations. These normalized activations form the input to the next layer. Consider
a mini-batch B with m examples. Let us consider one such activation x in the layer l
taking values x1, x2, . . . , xm. We normalize these to

x̂i =
xi − µB√
σB2 + ε

where µB and σB are the mean and standard deviation for batch B and ε is some
small constant (used for numerical stability). The corresponding output of the batch
normalization layer yi for the i-th example is given by

yi = γx̂i + β
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(a) (1 Mark) What are the parameter(s) of the batch normalization layer ?

(b) (1 Mark) Assuming that we have the gradients of the loss function w.r.t. yi, i.e.,
∂L
∂yi

∀i ∈ {1, . . . ,m} is known, derive the expression for the gradient of the loss

function w.r.t. the parameter(s) of the batch normalization layer.

(c) (3 Marks) Derive the expression for the derivative of the loss function w.r.t. xi.

11. Let d0, . . . , dn−1 be the search directions used in Conjugate gradient descent. Recall that
these search directions are H-orthogonal and hence are linearly independent. Also recall
that αi−1 is the learning rate used in the update rule ui+1 = ui + αidi and ∇ui = Hei

(a) (1 Mark) Starting with ei =
∑i−1

j=0 δjdj, prove that, d>k∇ui = 0 ∀k < i.

(b) (2 Marks) Notice that the above condition is true irrespective of how we construct
di’s as long as they are H-orthogonal. Now suppose we construct di’s using the
following procedure

d0 = ∇u0 (1)

di = ∇ui −
i−1∑
k=0

βikdk ∀i > 0 (2)

Show that, ∇u>k∇ui = 0 ∀k 6= i

(c) (3 Marks) Essentially what we’ve done above is used ∇u0, . . . ,∇un−1 as the basis
for constructing di’s. Given the procedure for constructing search directions as
given in part (b), prove that

βij =
1

αi−1

∇u>i ∇ui
d>i−1Hdi−1

i = j + 1

βij = 0 i > j + 1

12. Consider the function f(θ) = f(x, y, z) = x2 + y2 + z2 − 8

(a) (0.25 Mark) Compute the gradient of the function at θ0 = {1,−1, 1}.
(b) (0.25 Mark) Compute the Hessian of the function at θ0 = {1,−1, 1}.
(c) (0.5 Mark) Starting from θ0 = {1,−1, 1} apply one step of Newton’s method to

obtain θ1.

13. (.100 Marks) Starting from first principles can you prove Stein’s Lemma ? ;-)
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