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Module 14.1: Sequence Learning Problems
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o In feedforward and convolutional
neural networks the size of the input
was always fixed

e For example, we fed fixed size (32 x
32) images to convolutional neural
networks for image classification
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o In feedforward and convolutional
neural networks the size of the input
was always fixed

o For example, we fed fixed size (32 x
32) images to convolutional neural
networks for image classification

(>P(on|sat, he)

{>P(he|sat, he)
{>P(chair|sat, he)
P (man|sat, he)

e Similarly in word2vec, we fed a fixed
window (k) of words to the network
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@ In feedforward and convolutional
neural networks the size of the input

was always fixed
apple .

- e For example, we fed fixed size (32 x
bus 32) images to convolutional neural
car networks for image classification

e Similarly in word2vec, we fed a fixed

window (k) of words to the network

o Further, each input to the network
was independent of the previous or
future inputs
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@ In feedforward and convolutional
neural networks the size of the input

apple was always fixed
—— e For example, we fed fixed size (32 x
kg\h bus 32) images to convolutional neural
m car networks for image classification
e Similarly in word2vec, we fed a fixed

window (k) of words to the network

o Further, each input to the network
was independent of the previous or
future inputs

e For example, the computatations,
outputs and decisions for two success-
ive images are completely independ-
ent of each other

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14



o In many applications the input is not
of a fixed size

e Further successive inputs may not be
b SET ) independent of each other

e For example, consider the task of

auto completion
e Given the first character ‘d’ you want
I I I I to predict the next character ‘e’ and
so on
d e e P
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o Notice a few things

e First, successive inputs are no longer
independent (while predicting ‘e’ you
P (stop) would want to know what the previ-
[j ous input was in addition to the cur-
rent input)

@ Second, the length of the inputs and

the number of predictions you need
I I I I to make is not fixed (for example,
“learn”, “deep”, “machine” have dif-
ferent number of characters)

D D D D e Third, each network ( -blue-
green structure) is performing the
same task (input : character output
: character)
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o These are known as sequence learning
problems

e We need to look at a sequence of (de-
P (stop) pendent) inputs and produce an out-
H put (or outputs)

e Each input corresponds to one time

step

I I I I e Let us look at some more examples of
such problems

d e e P
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@ Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

@ Once we see an adjective (social) we are
noun  verb  article adjective noun almost sure that the next word should be
a noun (man)

@ Thus the current output (noun) depends
on the current input as well as the previ-
ous input

@ Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

@ Notice that here we are interested in pro-
man is a social  animal ducing an output at each time step

@ Each network is performing the same
task (input : word, output : tag)
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e Sometimes we may not be interested
in producing an output at every stage

o Instead we would look at the full se-
don’t dom’t dom’t don’t  don’t quence and then produce an output
‘ e For example, consider the task of pre-
dicting the polarity of a movie review

@ The prediction clearly does not de-
pend only on the last word but also

I I I I I I on some words which appear before
o Here again we could think that the
network is performing the same task
D D D D D D at each step (input : word, output :
The movie was - boring - and - long +/—) but it’s just that we don’t care

about intermediate outputs
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@ Sequences could be composed of any-
thing (not just words)

e For example, a video could be treated
as a sequence of images

Surys Namaskar e We may want to look at the entire se-
quence and detect the activity being
performed
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Module 14.2: Recurrent Neural Networks
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How do we model such tasks involving sequences ?
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Wishlist
@ Account for dependence between inputs
@ Account for variable number of inputs

o Make sure that the function executed at each time step is the same

e We will focus on each of these to arrive at a model for dealing with sequences
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e What is the function being executed
at each time step 7

S; = U(U.m + b)
yi = O0Vs;+¢)

1 = timestep

Y1 Y2

@ Since we want the same function to be
51 52 executed at each timestep we should
share the same network (i.e., same
parameters at each timestep)
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o This parameter sharing also ensures
that the network becomes agnostic to
the length (size) of the input

Y1 Y2 Y3 Y4 Yn e Since we are simply going to compute
the same function (with same para-
meters) at each timestep, the number

Vv Vv Vv Vv Vv of timesteps doesn’t matter

@ We just create multiple copies of the

S1 S92 S3 Sq4 - S
" network and execute them at each

U U U U U timestep
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sh M. Khapra

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ? Let us see
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o First, the function being computed at
each time-step now is different

y1 = fi(z1)
Y2 = fa(w1, 22)
y3 = f3(x1, 2, 3)

@ The network is now sensitive to the
length of the sequence

e For example a sequence of length

10 will require f1,..., fio whereas a
’ ; sequence of length 100 will require
fi, -5 fio0
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@ The solution is to add a recurrent
connection in the network,

S; = U(Uwi +Wsi—1+ b)

Y1 Y2 Y3 Ya Yn
yi = O0Vs; +¢)
or
vy v v 4 yi = f(w4,8-1, W, U, V, b, c)
wHRw B lwH lw,  w, .
n @ s; is the state of the network at
U U U U U timestep ¢
o The parameters are W, U,V,c,b
which are shared across timesteps
x] xTo T3 xq Tn

e The same network (and parameters)
can be used to compute y1,y2, ..., Y10
OT Y100
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o This can be represented more com-
pactly
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verb  aticle adjective noun

o Let us revisit the sequence learning
problems that we saw earlier

e We now have recurrent connections
between time steps which account for
dependence between inputs
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Module 14.3: Backpropagation through time
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o Before proceeding let us look at the

dimensions of the parameters care-
fully

Y1 Y2 Y3 Y4
xz; € R" (n-dimensional input)
s; € R? (d-dimensional state)
y; € R¥  (say k classes)
U c RnXd

V € R&F
U U U U

W e Rdxd
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e How do we train this network 7
(Ans: using backpropagation)
@ Let us understand this with a con-
Y1 Y2 Y3 va crete example
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@ Suppose we consider our task of auto-
completion (predicting the next char-
acter)

e For simplicity we assume that there

b (stop) are only 4 characters in our vocabu-
U lary (d,e,p, <stop>)

o At each timestep we want to predict
Vv Vv 1% 1% one of these 4 characters
I w I 1074 I w I e What is a suitable output function for
this task 7 (softmax)
U U U U e What is a suitable loss function for
D D D D this task ? (cross entropy)
d e e P
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e Suppose we initialize U, V,W ran-
domly and the network predicts the

probabilities as shown
PredictedIrue

e And the true probabilities are as
shown

@ We need to answer two questions

e What is the total loss made by the
model ?

e How do we backpropagate this loss
and update the parameters (0 =
{U,V,W,b,c}) of the network ?
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o The total loss is simply the sum of the

21(0) 25(0) 25(0) Z4(0) loss over all time-steps
Y1 Y2 Y3 Ya

PredictedTruePredictedrue PredictedruePredictedrue

d [0.2 0 0.2 0 0.2 0 0.2

T
2= 340

Zi(0) = —log(yre)
yte = predicted probability of true

character at time-step t

T = number of timesteps

e For backpropagation we need to com-
pute the gradients w.r.t. W, U, V,b, c

@ Let us see how to do that
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e Let us consider a,g‘se) (V is a matrix

1(0) 22(60) 24(6) 2a06) so ideally we should write V,.Z(0))
Y1 Y2 Y3 Ya
PredictedIruePredictedrue PredictedruePredictedrue T
¢ o 07 oil fo| [0 e 0£(0) :Zai’%(@)
Lo MG B M BB oV 2oV
% \% \% \%
w w W e Fach term is the summation is simply
the derivative of the loss w.r.t. the
U U U U weights in the output layer
D D D D e We have already seen how to do this
when we studied backpropagation
d e e e
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@ Let us consider the derivative ag‘y )

£1(9) Z2(0) Z3(0) Z4(0)

W e e 0L(6) _ N~ 02(6)

Predictedl'ruePredictedrue PredictedruePredictedrue
d (0.2 0.2 2 0.2 0

e |07 7 0 a1l |o ow ow
P (0.1] [0 0.1f |0 0.7 |1 0.7 |1 t=1
stop 0.1 0 0.1 0 0.1 0 0.1 0
o By the chain rule of derivatives we
4 4 v know that 6‘?;3[(, ) is obtained by sum-
w w W ming gradients along all the paths
from £, (6) to w
U U U e What are the paths connecting .Z;(0)
to W ?
D D D D e Let us see this by considering .Z;(6)
d e e e
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sh M. Khapra

e Z,(0) depends on sy

S4 in turn depends on s3 and W
s3 in turn depends on s; and W
S9 in turn depends on s; and W

s1 in turn depends on sy and W
where s¢ is a constant starting state.
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@ What we have here is an ordered net-
work

@ In an ordered network each state vari-
able is computed one at a time in a
specified order (first s1, then sy and
so on)

e Now we have

89?4(9) . 8.,%4(9) 884
oW — 0Osy OW

e We have already seen how to compute
a‘%ie) when we studied backprop

0s
0s4

e But how do we compute 55
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o Recall that
sqg =0(Ws3+b)

@ In such an ordered network, we can’t
compute givé by simply treating ss as
a constant (because it also depends
on W)

@ In such networks the total derivative

0
i has two parts

o Explicit : %J;f;‘, treating all other in-

puts as constant

e Implicit : Summing over all indirect
paths from s4 to W

@ Let us see how to do this
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Osa_ O'sa  Os40s3
oW — OW  Os3 OW
M~ ——
explicit implicit
_ 0Tsy N 054 0T s3 Js3 0sy }
N ow 883 ow 682 ow
M ——
explicit implicit
AL O TA 384883[8*82 + 92 0]
N ow 883 ow 883 882 ow 881 ow
_ 0Tsy 054 0ts3  0Osy Js3 0Fsy  Osy Os3 Osg [6+31}

= oW 955 OW | 053055 OW | O3 05y 01 L OW

For simplicity we will short-circuit some of the paths

OW ~ sy OW | Os3 OW | Dsy OW | 0y OW | 2

Osy  0s40%sy 0s40Ts3  0540Tsy 05407 s 24: 0s4 0T sy,
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o Finally we have

834(9) . 634((9) 884
ow 854 ow

854 884 8+5k
Z ask ow

t

L04(0) _ azt
oW = Z

k@W

o This algorithm is called backpropaga-
tion through time (BPTT) as we
backpropagate over all previous time
steps
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Module 14.4: The problem of Exploding and Vanishing
Gradients
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e We will now focus on @ and high-

light an important problem in train-
ing RNN’s using BPTT

8875 - 8St 83,5_1 8sk+1
f)sk o 88,5 188,5 2 88k
_ H 38;+1
i 0s;
@ Let us look at one such term in the
product (i.e., 827;;1)
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88]‘
8aj

sj = lo(aj1), o(aj2),

. . Os;
@ We are interested in 85‘_97 -

a; = [ajl,ajz,ajg,...ajd,] a; :W8j+b
. o(ajq)] sj = o(ay)
Os; _ 0Osj Oa;
08]'_1 - 661]' aSj_l
= diag(o (a;))W
8de
0 0
0 0
e We are interested in the magnitude
, of £jf - < if it is small (large) %
o (aj4) and hence % will vanish (explode)

_88j1 88]'2 85]-3
Jai  Dayi Dap
| Osj1 052
— | Odaj2  Oaja
iy
g ((le) 0
!
| 0 o(ap)
0 0
L0 0
. i
= diag(o (a;))
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H ds; :Hdmg(al(“j))WH

88j71

< |[diag(@ (@) 1w

" o(a;) is a bounded function (sigmoid,
tanh) o' (a;) is bounded

/ 1
o (aj) < 1= [if o is logistic |
<1 =~I[if o is tanh |
st
<~|W
oo <vim
<A

Mitesh M. Khapra

sy || f[ 0s;
H 8Sk k41 8sj_1
t
< II »
Jj=k+1
< ()

o If v\ < 1 the gradient will vanish
o If v\ > 1 the gradient could explode

@ This is known as the problem of
vanishing/ exploding gradients
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Y1

Y2

v v
w w
H p—

u u

Ly
Y3 Ya Yn
v v v
w w
— | —
U U U

T4

o One simple way of avoiding this is to
use truncated backpropogation
where we restrict the product to
T(< t — k) terms
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Module 14.5: Some Gory Details
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0L4,(0)  9L4(0) ist 8+3k
oW~ 9s, ds

N —r —— k=1 v \\/-/
cRdxd cR1xd cRdxd cRdxdxd

e We know how to compute 6‘28259) (derivative of Z;(6) (scalar) w.r.t. last

hidden layer (vector)) using backpropagation

@ We just saw a formula for gj; which is the derivative of a vector w.r.t. a
vector)

te . o .
° %Vf/’“ is a tensor € R%*4*d_ the derivative of a vector € R% w.r.t. a matrix

c Rdxd

Otsy ?
e How do we compute p# 7 Let us see
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o We just look at one element of this 88+Vf,’“ tensor

+
975k s the (p, q,7)-th element of the 3d tensor

® W,
ar =Wskp_1+b
S — U(ak)
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d
ap — Wsk_l (9akp - 821‘:1 Wpisk—l,i

ag1 Wi Wiz ... Wig| |Sk-11 OWor Wr
ak2 Sk—1,2 =514 if p=q and i=r

=0 otherwise

, v V. / Sp_ 0 ) )
@kp Wit Wpa o Wpa| | Sk-1p Skp o'(akp)sk—1, if p=¢q and i=r

=0 otherwise

| Qkd | | Sk—1,d]

d
Qp = E WpiSk—1,i
i=1

Skp = 0 (akp)
8skp - 8skp 8akp
Wy Dagy Wy,
6akp
W,y

= U/(akp)
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