Module 22.1: Neural Autoregressive Density Estimator (NADE)
So far we have seen a few latent variable generation models such as RBMs and VAEs.

Latent variable models make certain independence assumptions which reduces the number of factors and in turn the number of parameters in the model.

For example, in RBMs we assumed that the visible variables were independent given the hidden variables which allowed us to do Block Gibbs Sampling.

Similarly in VAEs we assumed $P(x|z) = \mathcal{N}(0, I)$ which effectively means that given the latent variables, the x’s are independent of each other (Since $\Sigma = I$).
We will now look at Autoregressive (AR) Models which do not contain any latent variables.

The aim of course is to learn a joint distribution over \mathbf{x}.

As usual, for ease of illustration we will assume $\mathbf{x} \in \{0, 1\}^n$.

AR models do not make any independence assumption but use the default factorization of $p(\mathbf{x})$ given by the chain rule $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | \mathbf{x}_{<i})$.

The above factorization contains n factors and some of these factors contain many parameters ($O(2^n)$ in total).
Obviously, it is infeasible to learn such an exponential number of parameters.

AR models work around this by using a neural network to parameterize these factors and then learn the parameters of this neural network.

What does this mean? Let us see!
At the output layer we want to predict n conditional probability distributions (each corresponding to one of the factors in our joint distribution)

At the input layer we are given the n input variables

Now the catch is that the n^{th} output should only be connected to the previous $n-1$ inputs

In particular, when we are computing $p(x_3|x_2, x_1)$ the only inputs that we should consider are x_1, x_2 because these are the only variables *given* to us while computing the conditional
The Neural Autoregressive Density Estimator (NADE) proposes a simple solution for this problem. First, for every output unit, we compute a hidden representation using only the relevant input units. For example, for the k^{th} output unit, the hidden representation will be computed using:

$$h_k = \sigma(W_{.,<k}x_{<k} + b)$$

where $h_k \in \mathbb{R}^d, W \in \mathbb{R}^{d \times n}, W_{.,<k}$ are the first k columns of W.

We now compute the output $p(x_k|x_1^{k-1})$ as:

$$y_k = p(x_k|x_1^{k-1}) = \sigma(V_k h_k + c_k)$$
Let us look at the equations carefully

\[h_k = \sigma(W_.<k x_<k + b) \]

\[y_k = p(x_k|x_1^{k-1}) = \sigma(V_k h_k + c_k) \]

- How many parameters does this model have?
- Note that \(W \in \mathbb{R}^{d \times n} \) and \(b \in \mathbb{R}^{d \times 1} \) are shared parameters and the same \(W, b \) are used for computing \(h_k \) for all the \(n \) factors (of course only the relevant columns of \(W \) are used for each \(k \)) resulting in \(nd + d \) parameters.
- In addition, we have \(V_k \in \mathbb{R}^{d \times 1} \) and \(c_k \in \mathbb{R}^{d \times 1} \) for each of the \(n \) factors resulting in a total of \(nd + n \) parameters.
- There is also an additional parameter $h_1 \in \mathbb{R}^d$ (similar to the initial state in LSTMs, RNNs)
- The total number of parameters in the model is thus $2nd + n + 2d$ which is linear in n
- In other words, the model does not have an exponential number of parameters which is typically the case for the default factorization $p(x) = \prod_{i=1}^{n} p(x_i | x_{<k})$
- Why? Because we are sharing the parameters across the factors
- The same W, b contribute to all the factors
How will you train such a network?
backpropagation: it's a neural network after all

What is the loss function that you will choose?

For every output node we know the true probability distribution

For example, for a given training instance, if \(X_3 = 1 \) then the true probability distribution is given by
\[
p(x_3 = 1 | x_2, x_1) = 1, p(x_3 = 0 | x_2, x_1) = 0 \text{ or } p = [0, 1]
\]

If the predicted distribution is \(q = [0.7, 0.3] \) then we can just take the cross entropy between \(p \) and \(q \) as the loss function

The total loss will be the sum of this cross entropy loss for all the \(n \) output nodes
Now let’s ask a couple of questions about the model (assume training is done)

- Can the model be used for abstraction? i.e., if we give it a test instance \(\mathbf{x} \), can the model give us a hidden abstract representation for \(\mathbf{x} \)?

- Well, you will get a sequence of hidden representations \(h_1, h_2, \ldots, h_n \) but these are not really the kind of abstract representations that we are interested in.

- For example, \(h_n \) only captures the information required to reconstruct \(x_n \) given \(x_1 \) to \(x_{n-1} \) (compare this with an autoencoder wherein the hidden representation can reconstruct all of \(x_1, x_2, \ldots, x_n \)).

- These are not latent variable models and are, by design, not meant for abstraction.
Can the model do generation? How?

Well, we first compute $p(x_1 = 1)$ as $y_1 = \sigma(V_1 h_1 + c_1)$

Note that V_1, h_1, c_1 are all parameters of the model which will be learned during training

We will then sample a value for x_1 from the distribution $Bernoulli(y_1)$
We will now use the sampled value of x_1 and compute h_2 as

$$h_2 = \sigma(W_{<2}x_{<2} + b)$$

Using h_2 we will compute $P(x_2 = 1|x_1 = x_1)$ as $y_2 = \sigma(V_2h_2 + c_2)$

We will then sample a value for x_2 from the distribution $Bernoulli(y_2)$

We will then continue this process till x_n generating the value of one random variable at a time

If x is an image then this is equivalent to generating the image one pixel at a time (very slow)
Of course, the model requires a lot of computations because for generating each pixel we need to compute

\[h_k = \sigma(W_{:,<k} x_{<k} + b) \]

\[y_k = p(x_k | x_1^{k-1}) = \sigma(V_k h_k + c_k) \]

However notice that

\[W_{:,<k+1} x_{<k+1} + b = W_{:,<k} x_{<k} + b + W_{:,k} x_k \]

Thus we can reuse some of the computations done for pixel \(k \) while predicting the pixel \(k + 1 \) (this can be done even at training time)
Things to remember about NADE

- Uses the explicit representation of the joint distribution \(p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | \mathbf{x}_{<k}) \)
- Each node in the output layer corresponds to one factor in this explicit representation
- Reduces the number of parameters by sharing weights in the neural network
- Not designed for abstraction
- Generation is slow because the model generates one pixel (or one random variable) at a time
- Possible to speed up the computation by reusing some previous computations
Module 22.2: Masked Autoencoder Density Estimator (MADE)
• Suppose the input $x \in \{0, 1\}^n$, then the output layer of an autoencoder also contains n units.

• Notice the explicit factorization of the joint distribution $p(x)$ also contains n factors:

$$p(x) = \prod_{k=1}^{n} p(x_k|x_{<k})$$

• **Question:** Can we tweak an autoencoder so that its output units predict the n conditional distributions instead of reconstructing the n inputs?
Note that this is not straightforward because we need to make sure that the k-th output unit only depends on the previous $k-1$ inputs.

In a standard autoencoder with fully connected layers the k-th unit obviously depends on all the input units.

In simple words, there is a path from each of the input units to each of the output units.

We cannot allow this if we want to predict the conditional distributions $p(x_k|x_{<k})$ (we need to ensure that we are only seeing the *given* variables $x_{<k}$ and nothing else).
We could ensure this by masking some of the connections in the network to ensure that y_k only depends on $x_{<k}$.

We will start by assuming some ordering on the inputs and just number them from 1 to n.

Now we will *randomly* assign each hidden unit a number between 1 to $n-1$ which indicates the number of inputs it will be connected to.

For example, if we assign a node the number 2 then it will be connected to the first two inputs.

We will do a similar assignment for all the hidden layers.
Let us see what this means.

For the first hidden layer this numbering is clear - it simply indicates the number of ordered inputs to which this node will be connected.

Let us now focus on the highlighted node in the second layer which has the number 2.

This node is only allowed to depend on inputs x_1 and x_2 (since it is numbered 2).

This means that it should be only connected to those nodes in the previous hidden layer which have seen only x_1 and x_2.

In other words it should only have connections from those nodes, which have been assigned a number ≤ 2.

Mitesh M. Khapra
Now consider the node labeled 3 in the output layer.

This node is only allowed to see inputs x_1 and x_2 because it predicts $p(x_3|x_2,x_1)$ (and hence the given variables should only be x_1 and x_2).

By the same argument that we made on the previous slide, this means that it should be only connected to those nodes in the previous hidden layer which have seen only x_1 and x_2.

We can implement this by taking the weight matrices W^1, W^2 and V and applying an appropriate mask to them so that the disallowed connections are dropped.
For example we can apply the following mask at layer 2:

\[
\begin{bmatrix}
W^2_{11} & W^2_{12} & W^2_{13} & W^2_{14} & W^2_{15} \\
W^2_{21} & W^2_{22} & W^2_{23} & W^2_{24} & W^2_{25} \\
W^2_{31} & W^2_{32} & W^2_{33} & W^2_{34} & W^2_{35} \\
W^2_{41} & W^2_{42} & W^2_{43} & W^2_{44} & W^2_{45} \\
W^2_{51} & W^2_{52} & W^2_{53} & W^2_{54} & W^2_{55}
\end{bmatrix} \odot \begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
The objective function for this network would again be a sum of cross entropies.

The network can be trained using backpropagation such that the errors will only be propagated along the active (unmasked) connections (similar to what happens in dropout).
Similar to NADE, this model is not designed for abstraction but for generation

How will you do generation in this model? Using the same iterative process that we used with NADE

First sample a value of x_1

Now feed this value of x_1 to the network and compute y_2

Now sample x_2 from Bernoulli (y_2) and repeat the process till you generate all variables upto x_n