CS7015 (Deep Learning): Lecture 4

Feedforward Neural Networks, Backpropagation

Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology Madras

7015 (Deep Learning): Lecture 4

References/Acknowledgments

See the excellent videos by Hugo Larochelle on Backpropagation

sh M. Khapra 015 (Deep Learning): Lecture 4

Module 4.1: Feedforward Neural Networks (a.k.a.
multilayered network of neurons)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

o The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer
W; € R™™ and b; € R™ are the weight and bias
between layers ¢ — 1 and ¢ (0 < i < L)

Wi, € R™* and by, € R* are the weight and bias
between the last hidden layer and the output layer
(L = 3 in this case)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

hy =g = f(z) o The pre-activation at layer ¢ is given by
ai(z) = b; + Wih;_1(x)
The activation at layer ¢ is given by
hi(z) = g(ai(z))

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

The activation at the output layer is given by

f(@) = hy(z) = O(ar(z))

where O is the output activation function (for
example, softmax, linear, etc.)

To simplify notation we will refer to a;(x) as a;
and h;(z) as h;

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

o The pre-activation at layer ¢ is given by
a; = b; + Wih;
o The activation at layer 7 is given by
hi = g(ai)

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

o The activation at the output layer is given by

f(z) =hy = O(ar)

where O is the output activation function (for
example, softmax, linear, etc.)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

e Data: {-fz'ayi}i]il
e Model:

Ui = f(acz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:

0= Wl, . WL, bl, bg, ceny bL(L = 3)
5 @ Algorithm: Gradient Descent with Back-
propagation (we will see soon)

e Objective/Loss/Error function: Say,

| Nk
min ZZ(Q@' — ij)?

i=1 j=1

In general, min £ (0)

where Z(0) is some function of the parameters

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Module 4.2: Learning Parameters of Feedforward
Neural Networks (Intuition)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

The story so far...
@ We have introduced feedforward neural networks

o We are now interested in finding an algorithm for learning the parameters of
this model

Mitesh M. Khapra 7015 (Deep Learning): Lecture 4

hy =9 = f(z) @ Recall our gradient descent algorithm

Algorithm: gradient_descent()

t <+ 0;
maz_terations < 1000;
Initialize w, bo;
while t++ < max_iterations do
Wi < wg — NV wy;

biy1 < by —nVby;
end

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Recall our gradient descent algorithm

We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;

max_iterations <— 1000;

Initialize 6y = [wo, byl;

while t++ < maz_iterations do
| O < 6 — V0

end

Mitesh M. Khapra

where V6, = [3-’83”115?)7 &;ﬁb(te)]T

Now, in this feedforward neural network,
instead of 6 = J[w,b] we have 0 =
(W1, Wa, .., WL, b1, ba, .., by

We can still use the same algorithm for
learning the parameters of our model

CS7015 (Deep Learning): Lecture 4

@ Recall our gradient descent algorithm

@ We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;
max_iterations <— 1000;
Initialize 0y = [W{, .., W09, .. b0
while t++ < maz_iterations do
| O < 6 — V0

end
_ro£0) o2(0) aZ0) 0L0)1T
o where V0; = [awl,t 1 OWp.? Dby ' Obpy]
o Now, in this feedforward neural network,
instead of 6 = [w,b] we have 6 =

(W1, Wa, .., WL, b1, ba, .., br)]
o We can still use the same algorithm for
learning the parameters of our model

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

o Except that now our V@ looks much more nasty

ro.2(0) 0.2(0) 8.2(0) 0.2(0) 0.2(0) 0.2(0) 82(00) 9£(0) 0.2(6)7
oWiir "0 OWiip OWorn "7 OWain "7 OWpar "7 OWpak OWpax 0Obin T 0Obpa
2.2(6) 2.2(0) 8.2(6) 2.2(6) 2.2(0) 0.2(0) 0.20) 9.2(0) 2.2(6)
OWior 7" OWiap OWaar *°° OWaan 77 OWpor 77 OWpor OWpror 0Obiz “°° Obra
0.2(0) 0.2(0) 0.2(0) 0.2(0) 0.2(0) 0.2(0) 0.2(0) L) 0.2(0)

_awlnl U OWinn OWantr T OWapp T aI/VL,nl U 8VVL,nk: QWL,nk Ob1n Tt Obrg a

e V@ is thus composed of
VWi, VW, .. VW_4 € Rnxn’ VWi, € RnXk,
Vb1, Vb, ...,.Vbr_1 € R” and Vb, € RF

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

We need to answer two questions
e How to choose the loss function .£(6)?

o How to compute V@ which is composed of
VWi, VWa,...,VWi_1 € R™" VW € R**k
Vbl, ng, ...,VbL_l € R™ and Vb, € Rk ?

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Module 4.3: Output Functions and Loss Functions

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

We need to answer two questions
e How to choose the loss function .Z(0) ?

e How to compute V@ which is composed of:
VWi, VWa,...,VWi_1 € R™" VW € R**k
Vbl, ng, ...,VbL_l € R™ and Vb, € Rk ?

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

@ The choice of loss function depends

yi =A{7.5 8.2 7.7} on the problem at hand
imdb Critics RT o We will illustrate this with the help
Rating Rating Rating of two examples
T T T o Consider our movie example again
but this time we are interested in

predicting ratings
Neural network with o Here y; € R3

L —1 hidden layers @ The loss function should capture how

much ¢; deviates from y;

T T T T T T o If y; € R™ then the squared error loss
can capture thls dev1at10n
isActor isDirector
Damon * * Nolan * °= * * * * * ° Z Z yz; yzy
€; i=1 j=1

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

o A related question: What should the
output function ‘O’ be if y; € R?

o More specifically, can it be the logistic
function?

@ No, because it restricts g; to a value
between 0 & 1 but we want ¢; € R

@ So, in such cases it makes sense to
have ‘O’ as linear function

f(z) =hr =0O(ar)
= Woar, + bo

e yi = f(x;) is no longer bounded
between 0 and 1

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Intentionally left blank

M. Khapra JS701

o Now let us consider another problem

y=11 0 0 0] for which a different loss function
Apple Mango Orange Banana would be appropriate
@ Suppose we want to classify an image
T T T T into 1 of k classes

e Here again we could use the squared

Neural network with error loss to capture the deviation
L — 1 hidden layers e But can you think of a better

function?

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

o Notice that gy is a probability

y=11 0 0 0] distribution
Apple Mango Orange Banana @ Therefore we should also ensure that
7y is a probability distribution
e What choice of the output activation
‘O’ will ensure this ?
Neural Tletwork with ap = Wirhp 1+ by
L — 1 hidden layers ay
X etr
9; =O(ar); = k

> €7

O(ar); is the 5 element of § and ay,
is the 7 element of the vector ar,.

e This function is called the softmax
function

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

o Now that we have ensured that both

y=11 0 0 0] y & y are probability distributions
Apple Mango Orange Banana can you think of a function which
captures the difference between

T T T T them?

e Cross-entropy

Neural network with

k
L — 1 hidden layers L(0) == yelog
c=1

@ Notice that

ye =1 if ¢ = £ (the true class label)
=0 otherwise
" Z(0) = —log g

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

e So, for classification problem (where you have
hrp=19= f() to choose 1 of K classes), we use the following
objective function

miniemize Z(0) = —log 9

or maxiemize — Z(0) = logye

o But wait!
Is gy a function of 0 = [Wy, Wa, ., W, b1, bs,.,br]?
@ Yes, it is indeed a function of 6
U¢ = [O(W39(Wag(Wix + b1) + ba) + b3)]e
e What does ¢, encode?

1 o It is the probability that = belongs to the ¢*" class
(bring it as close to 1).

o log gy is called the log-likelihood of the data.

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Outputs

Real Values Probabilities

Output Activation Linear Softmax

Loss Function Squared Error | Cross Entropy

@ Of course, there could be other loss functions depending on the problem at hand
but the two loss functions that we just saw are encountered very often

o For the rest of this lecture we will focus on the case where the output activation
is a softmax function and the loss function is cross entropy

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Module 4.4: Backpropagation (Intuition)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

We need to answer two questions
e How to choose the loss function .Z(0) ?

e How to compute V@ which is composed of:
VW1, VWs,...,VIWr_1 € R™" VW € R™*k
Vbi,Vbs,...,.Vbr,_1 € R” and Vb, € RF ?

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

@ Let us focus on this one
Weight (Wug).
o To learn this weight

using SGD we need a

9.2(0)
formula for Wh1s -

e We will see how to
calculate this.

Mitesh M. Khapra

Algorithm: gradient
descent()

t <+ 0;
max_iterations <— 1000;
Initialize 6y;
while
t++ < mazx_iterations do
Or11 < 0 — Vo
end

CS7015 (Deep Learning): Lecture 4

o First let us take the simple case when

y = f(x
we have a deep but thin network. Ty J(@)
o In this case it is easy to find the
derivative by chain rule. ap
Win
21

63(9) _ (9‘,2”((9) (91:1 0(1,L11 (9]7,21 (9&21 6h11 aan

8W111 (9?:/ 8(1L11 3;7,21 8(1,21 6h11 8&11 6W111 "
((9991/2[’;5191) - 852;519) 381;][211 (just compressing the chain rule) It Waii
OWarr Ohar OWon -

0L(0) 0L(0) dary Wi
OWry1 Odari OWrn

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Let us see an intuitive explanation of backpropagation before we get into the
mathematical details

sh M. Khapra 7015 (Deep Learning): Lecture 4

@ We get a certain loss at the output and we try to _
figure out who is responsible for this loss
@ So, we talk to the output layer and say “Hey! You

are not producing the desired output, better take
responsibility”.

@ The output layer says “Well, I take responsibility
for my part but please understand that I am only
as the good as the hidden layer and weights below
me”. After all ...

fx) =9=0Wrhr_1 +br)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

So, we talk to Wpr,br, and Ay and ask them “What is _

wrong with you?”

Wi, and by, take full responsibility but hy says “Well,
please understand that I am only as good as the pre-
activation layer”

The pre-activation layer in turn says that I am only as as
good as the hidden layer and weights below me. W3
We continue in this manner and realize that the ha
responsibility lies with all the weights and biases (i.e. ‘: “{
all the parameters of the model) ay’~!)
But instead of talking to them directly, it is easier to h Wy
talk to them through the hidden layers and output Loy (=)
layers (and this is exactly what the chain rule allows 04 A "y
S ~ 5
us to do) a”~" (X
R Wy
83(0) _ 83(9) 8y 8(13 6h2 8&2 (9}11 8@1
8W111 - 8;} 8a3 ahz 8a2 ahl 8@1 6W111 ‘
N—_—— —_—— Y— N — N — _I‘l ,(122
Talk to the Talk to the Talk to the Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer t‘hit
weights

:sh M. Khapra CS7015 (Deep Learning): Lecture 4

b3
A
(P

bo
&
(Y198

b1

Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights and biases

0.2(0) 02(9) 99 dazdhy daz Oy day

8W111 8y 8@3 8h2 8@2 8h1 8@1 anll
——— —_——— —— ——— ——
Talk to the Talk to the Talk to the Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights

o Our focus is on Cross entropy loss and Softmax output.

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Module 4.5: Backpropagation: Computing Gradients
w.r.t. the Output Units

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights

0.2(0) 02(0) 0j Dagdhy Dazdhy day

8W111 8y d(ld 8h2 8@2 8h1 8a1 8W111
~—— —_——— ——— ——
Talk to the Talk to the Talk to the Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights

@ Our focus is on Cross entropy loss and Softmax output.

Mitesh M. Khapra)15 (Deep Learning): Lecture 4

Let us first consider the partial derivative —
w.r.t. i-th output

Z(0) = —logye (¢ = true class label)

0
Z(0)) = —logy
agi((0)) ayi(og Je)
= — Al ifi=1¢
Ye
= 0 otherwise
More compactly,
0 Lii=e)
_(2(9)) = ——=4
8yi((0)) 7

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

0 Lio=s)
— (Z(0)) = ——
8%((0)) »

We can now talk about the gradient
w.r.t. the vector g

8=§(9) To=1

Y1
1 | Le=2
Vo) = | i | ="
Ok To—

1

= —<€

Ye

where e(¢) is a k-dimensional vector
whose /-th element is 1 and all other
elements are 0.

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

What we are actually interested in is —

0Z(0) _ 9(—logg)

8@ Li - 80, Li
_ O(=log ge) O
0y, Oar;

Does 1y depend on ar; ? Indeed, it does.

exp(are)

> iexplar;)

Having established this, we will now

derive the full expression on the next
slide

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

A S
dar; “7 9 dars (z)
1o Ofwy _ 0g(x) 1 g(x) Oh(x)
= 8CLMsoftmaac(aL)g O oz h(z) h(x)2 O

_ -1 0 exp(ar)e
Ue Oar; Y, exp(ar)e

1 (6 explar)e exp(ar)e(5o Sy explar)i))

dar;

> explar)y (25 (exp(ar)i)?

9
_ 1 1= exp(aL)e __exp(ag)y exp(ar)i

Je (Yooexplap)y Yo explar)i Yo eXp(aL)i’>

-1
=3 (]l(e_i)softmax(a,;)g - softmaac(aL)gsoftmam(aL)i>
[

1
= 2 L — i
yz((e=iJe — §e:)

= —(Le=n —)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

So far we have derived the partial derivative w.r.t. —
the i-th element of aj,

0.2(6)
Oar;

= —(Ly=i — Us)

We can now write the gradient w.r.t. the vector ap

aéf(e) — (Le=1 — 21)
4L — (Lp=2 — 92)
VaLg(e) = = .
Y20 F
dark — (Lo—t, — k)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Module 4.6: Backpropagation: Computing Gradients
w.r.t. Hidden Units

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights and biases

80%(9) 83() 8y 0(13 8112 8@ 6]11 aal
8‘/Vlll N 8y 8@3 0h2 8a2 8}L1 3(11 8W111
——— — e N——

Talk to the Talk to the and now

Talk to the Talk to the
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights

@ Our focus is on Cross entropy loss and Softmax output.

)15 (Deep Learning): Lecture 4

Mitesh M. Khapra

Chain rule along multiple paths: If a
function p(z) can be written as a function of
intermediate results ¢;(z) then we have :

op(z) op(z) Ogm(z)
0z _;&Jm(z) 0z

In our case:
@ p(z) is the loss function .Z(0)
° 2= hyj

° Qm(z) = QLm

Mitesh M. Khapra

CS7015 (Deep Learning): Lecture 4

Intentionally left blank

M. Khapra JS701

k
2.20) 0.L(0) Oait1m
8}11]' - 8ai+17m 8h”
m=1
k
_ 0£(6)
- Z Daiti,m @ itLm.j
m=1

Now consider these two vectors,

8.2(0)

Oaiy1,1 WH—LLJ
vaz‘+1$(0) =) Wi+17 g

0.2(6) o

0a;1,k Wz—‘,—l,k,]

Wita,. j is the j-th column of W;1; see that,

k
0 (0
(Wi+1, . ,j)TVai+1$(9) = Z () I/Vz'—i-l,m,j

aiv1 = Wigihij + bita

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

We have,%@ = (Wi+1,.,j)Tin+1$(9)
ij

We can now write the gradient w.r.t. h;

9.2(0)

Oh;1 (WH-L . ,1)Tvaz‘+1$(9)
aéiw) (Wi, 2) "V,
Vh20)=| 7" | = :
8522'(0) (VVZ'—H, . ,n)TvaHr’g(G)
= (Wi+1)T(vai+1$(0))

o We are almost done except that we do not
know how to calculate V,, .2 (0) fori < L—1

ai+1

o We will see how to compute that

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

[—logge |
8.2(0)

a1

Vo Z(0) = |
8.2(0)

“Bain
0L2(0) 0.2(0) Ohy;
8&@' B 8hi]‘ 80,1‘]‘
0Z(0)
= 8h5j)g(aij) [hij = g(aiz)]
S (air)

Va, Z(0) =

0.Z(0 .’
8hz‘(n)g (ain)

=V L) O L...g (@), ..]

Mitesh M. Khapra

Module 4.7: Backpropagation: Computing Gradients
w.r.t. Parameters

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights and biases

0.£(0) 0L(0) 99 azdhy daz Ay Oay

ann 8y 8(13 8h2 6a2 3h1 8@1 dWlH
~—— —_—— —— ——
Talk to the Talk to the Talk to the Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights

@ Our focus is on Cross entropy loss and Softmax output.

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Recall that, —

ax = by + Wihy 1
8@]“'
MWij
02(0) 9L(0) day
MWk Oar; OWiij

_020)

= hp_1,;

h 1
Oay; k=1j
2.2(0) 9.0 0.2(6)
OWg1r OWgia "0 "7 OWhay,
Vi, 2(6) = |
Y0
8Vann

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Intentionally left blank

M. Khapra JS701

Lets take a simple example of a W}, € R3*3 and see what each entry looks like

roZ®) o0Z0) 0Z(0)q
OWpg11 OWg12 OWi13

oz axwev) oz6) | 020) 0206) daw
vwkg(a)_ OWio1 OWiaa OWpias | OWgyy — Oagi Wy

0.2(0) 02(0) 02(0)
LOWk31 OWiza OWp3z3 A

0L (6 0£(0)
()u/ 1 hk 1,1 ()(l] 1] Vk—1,2 Oag
0L(0 0L (0 0L (0 T
Vw, Z(0) = 0a£2>hk—1,1 Tlsz)hk—l,Q aa,fg) =V, Z(0) - hx-1
0.2(6) 0.2(6) 0.2(0)

Oays hie—1,1 Oags hie—1,2 Oays

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Finally, coming to the biases —

ag; = bg; + Z Whijhi—1,5
J
02(0) 0.2(6) da;
by, Oay; Oby;
_02(0)
~ Oay

We can now write the gradient w.r.t. the vector
b
89.2(8)
02l
Vi ZL(0)=| | =Va Z(0)

2.2(0)

Akn

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Module 4.8: Backpropagation: Pseudo code

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Finally, we have all the pieces of the puzzle

Va.-Z(0) (gradient w.r.t. output layer)
Vi -Z(0),Va, Z(0) (gradient w.r.t. hidden layers, 1 <k < L)

Vw,Z(0), Vb, Z(0) (gradient w.r.t. weights and biases, 1 < k < L)

We can now write the full learning algorithm

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Algorithm: gradient_descent()

t < 0;

max_iterations < 1000;

Initialize 6y = WP, .., W2, 80, ..., %];

while t++ < mazx_iterations do
hi,ha,....hp—1,a1,0a2,....,ar,§ = forward_propagation(6;);
Vo, = backward_propagation(hy, ha,...,hp—1,a1,a2,...,aL5,Y,J);
Or41 < 0 — Vi,

end

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Algorithm: forward_propagation(6)

for k=1toL—1do
ar = by, + Wihp_1;
hi, = g(ax);

end

ap =br +Wrhp1;

9= 0O(ar);

Mitesh M. Khapra

CS7015 (Deep Learning): Lecture 4

Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;

Va, Z(0) = —(e(y) — 1) ;

for k=L to1do

/ / Compute gradients w.r.t. parameters ;
Vw,Z(0) = Vakf(H)hill ;

kaf(e) = vakg(e) ;

// Compute gradients w.r.t. layer below ;
vhk—lg(a) = Wg(vakg(e)) ;

// Compute gradients w.r.t. layer below (pre-activation);
Va . ZL0) =V, Z0)O]....,¢ (ak-14),---];
end

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Module 4.9: Derivative of the activation function

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4

Now, the only thing we need to figure out is how to compute ¢’

Logistic function

9(z) = o(2)
_ 1
Cl4e
, 1 d
g (Z) = (_)(1 _f_e,z)Q%
1 —z
= (_1) (1 + 67‘2)2 (_

Mitesh M.

tanh

g(z) =tanh (2)

e’ —e”

z

d (,z

e” —¢€
d

—2)

CeFfe?
= (ez + e—z)

)

(¢ +e)2
, —(eF —e)
g (Z) (ez + efz)Q
_(ez 4 6—2)2 . (ez o 6—z)2
(ez + C_Z)2
72)2

(e* —e

(9(2))

Khapra

CS7015 (Deep Learning): Lecture 4

