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Module 2.1: Biological Neurons
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Artificial Neuron

• The most fundamental unit of a deep
neural network is called an artificial
neuron

• Why is it called a neuron ? Where does
the inspiration come from ?

• The inspiration comes from biology
(more specifically, from the brain)

• biological neurons = neural cells = neural
processing units

• We will first see what a biological neuron
looks like ...
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Biological Neurons∗

∗Image adapted from
https://cdn.vectorstock.com/i/composite/12,25/neuron-cell-vector-81225.jpg

• dendrite: receives signals from other
neurons

• synapse: point of connection to other
neurons

• soma: processes the information

• axon: transmits the output of this
neuron
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• Let us see a very cartoonish illustration
of how a neuron works

• Our sense organs interact with the out-
side world

• They relay information to the neurons

• The neurons (may) get activated and pro-
duces a response (laughter in this case)
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• Of course, in reality, it is not just a single neuron
which does all this

• There is a massively parallel interconnected net-
work of neurons

• The sense organs relay information to the lowest
layer of neurons

• Some of these neurons may fire (in red) in re-
sponse to this information and in turn relay inform-
ation to other neurons they are connected to

• These neurons may also fire (again, in red) and
the process continues

eventually resulting in a re-
sponse (laughter in this case)

• An average human brain has around 1011 (100 bil-
lion) neurons!
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• This massively parallel network also ensures that
there is division of work

• Each neuron may perform a certain role or respond
to a certain stimulus
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A simplified illustration
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• The neurons in the brain are arranged in
a hierarchy

• We illustrate this with the help of visual
cortex (part of the brain) which deals
with processing visual information

• Starting from the retina, the information
is relayed to several layers (follow the ar-
rows)

• We observe that the layers V 1, V 2 to
AIT form a hierarchy (from identifying
simple visual forms to high level objects)
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Sample illustration of hierarchical
processing∗

∗Idea borrowed from Hugo Larochelle’s lecture slides
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Disclaimer

• I understand very little about how the brain works!

• What you saw so far is an overly simplified explanation of how the brain works!

• But this explanation suffices for the purpose of this course!
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Module 2.2: McCulloch Pitts Neuron
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• McCulloch (neuroscientist) and Pitts (logician)
proposed a highly simplified computational model
of the neuron (1943)

• g aggregates the inputs

and the function f takes
a decision based on this aggregation

• The inputs can be excitatory or inhibitory

• y = 0 if any xi is inhibitory, else

g(x1, x2, ..., xn) = g(x) =
n∑
i=1

xi

y = f(g(x)) = 1 if g(x) ≥ θ
= 0 if g(x) < θ

• θ is called the thresholding parameter

• This is called Thresholding Logic
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Let us implement some boolean functions using this McCulloch Pitts (MP) neuron ...
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• Can any boolean function be represented using a McCulloch Pitts unit ?

• Before answering this question let us first see the geometric interpretation of a MP unit
...
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x1 x2

y ∈ {0, 1}

1

OR function
x1 + x2 =

∑2
i=1 xi ≥ 1

• A single MP neuron splits the input points (4
points for 2 binary inputs) into two halves

• Points lying on or above the line
∑n

i=1 xi− θ = 0

and points lying below this line

• In other words, all inputs which produce an output
0 will be on one side (

∑n
i=1 xi < θ) of the line and
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• What if we have more than 2 inputs?

• Well, instead of a line we will have a plane

• For the OR function, we want a plane
such that the point (0,0,0) lies on one
side and the remaining 7 points lie on the
other side of the plane

17



x1 x2 x3

y ∈ {0, 1}

OR1

x1

x2

x3

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 1, 0)

(0, 0, 1) (1, 0, 1)

(0, 1, 1) (1, 1, 1)

x1 + x2 + x3 = θ = 1

• What if we have more than 2 inputs?

• Well, instead of a line we will have a plane

• For the OR function, we want a plane
such that the point (0,0,0) lies on one
side and the remaining 7 points lie on the
other side of the plane

17



x1 x2 x3

y ∈ {0, 1}

OR1

x1

x2

x3

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 1, 0)

(0, 0, 1) (1, 0, 1)

(0, 1, 1) (1, 1, 1)

x1 + x2 + x3 = θ = 1

• What if we have more than 2 inputs?

• Well, instead of a line we will have a plane

• For the OR function, we want a plane
such that the point (0,0,0) lies on one
side and the remaining 7 points lie on the
other side of the plane

17



x1 x2 x3

y ∈ {0, 1}

OR1

x1

x2

x3

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 1, 0)

(0, 0, 1) (1, 0, 1)

(0, 1, 1) (1, 1, 1)

x1 + x2 + x3 = θ = 1

• What if we have more than 2 inputs?

• Well, instead of a line we will have a plane

• For the OR function, we want a plane
such that the point (0,0,0) lies on one
side and the remaining 7 points lie on the
other side of the plane

17



x1 x2 x3

y ∈ {0, 1}

OR1

x1

x2

x3

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 1, 0)

(0, 0, 1) (1, 0, 1)

(0, 1, 1) (1, 1, 1)x1 + x2 + x3 = θ = 1

• What if we have more than 2 inputs?

• Well, instead of a line we will have a plane

• For the OR function, we want a plane
such that the point (0,0,0) lies on one
side and the remaining 7 points lie on the
other side of the plane

17



The story so far ...

• A single McCulloch Pitts Neuron can be used to represent boolean functions which are
linearly separable

• Linear separability (for boolean functions) : There exists a line (plane) such that all in-
puts which produce a 1 lie on one side of the line (plane) and all inputs which produce
a 0 lie on other side of the line (plane)
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Module 2.3: Perceptron

19



The story ahead ...

• What about non-boolean (say, real) inputs ?

• Do we always need to hand code the threshold ?

• Are all inputs equal ? What if we want to assign more weight (importance) to some
inputs ?

• What about functions which are not linearly separable ?
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x1 x2 .. .. xn

y

w1 w2 .. .. wn

• Frank Rosenblatt, an American psychologist, pro-
posed the classical perceptron model (1958)

• A more general computational model than McCul-
loch–Pitts neurons

• Main differences: Introduction of numerical
weights for inputs and a mechanism for learning
these weights

• Inputs are no longer limited to boolean values

• Refined and carefully analyzed by Minsky and Pa-
pert (1969) - their model is referred to as the per-
ceptron model here
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x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if
n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if
n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if
n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if
n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if
n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if
n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if
n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if
n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if
n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if
n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if

n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if
n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if

n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if

n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if

n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if

n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if

n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if

n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if

n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if

n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xnx0 = 1

y

w1 w2 .. .. wnw0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if

n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if

n∑
i=1

wi ∗ xi − θ < 0

22



x1 x2 .. .. xnx0 = 1

y

w1 w2 .. .. wnw0 = −θ

A more accepted convention,

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if

n∑
i=1

wi ∗ xi ≥ θ

= 0 if

n∑
i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if

n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if

n∑
i=1

wi ∗ xi − θ < 0

22



We will now try to answer the following questions:

• Why are we trying to implement boolean functions?

• Why do we need weights ?

• Why is w0 = −θ called the bias ?
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x0 = 1 x1 x2 x3

y

w0 = −θ w1 w2 w3

x1 = isActorDamon

x2 = isGenreThriller

x3 = isDirectorNolan

• Consider the task of predicting whether we would like a
movie or not

• Suppose, we base our decision on 3 inputs (binary, for sim-
plicity)

• Based on our past viewing experience (data), we may give
a high weight to isDirectorNolan as compared to the other
inputs

• Specifically, even if the actor is not Matt Damon and the
genre is not thriller we would still want to cross the
threshold θ by assigning a high weight to isDirectorNolan
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x0 = 1 x1 x2 x3

y

w0 = −θ w1 w2 w3

x1 = isActorDamon

x2 = isGenreThriller

x3 = isDirectorNolan

• w0 is called the bias as it represents the prior (prejudice)

• A movie buff may have a very low threshold and may watch
any movie irrespective of the genre, actor, director [θ = 0]

• On the other hand, a selective viewer may only watch
thrillers starring Matt Damon and directed by Nolan [θ = 3]

• The weights (w1, w2, ..., wn) and the bias (w0) will depend
on the data (viewer history in this case)
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What kind of functions can be implemented using the perceptron? Any difference from
McCulloch Pitts neurons?
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McCulloch Pitts Neuron
(assuming no inhibitory inputs)

y = 1 if

n∑
i=0

xi ≥ 0

= 0 if

n∑
i=0

xi < 0

Perceptron

y = 1 if
n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

• From the equations it should be clear that even
a perceptron separates the input space into two
halves

• All inputs which produce a 1 lie on one side and all
inputs which produce a 0 lie on the other side

• In other words, a single perceptron can only be
used to implement linearly separable functions

• Then what is the difference?

The weights (includ-
ing threshold) can be learned and the inputs can
be real valued

• We will first revisit some boolean functions and
then see the perceptron learning algorithm (for
learning weights)
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x1 x2 OR

0 0

0 w0 +
∑2

i=1wixi < 0

1 0 1 w0 +
∑2

i=1wixi ≥ 0

0 1 1 w0 +
∑2

i=1wixi ≥ 0

1 1 1 w0 +
∑2

i=1wixi ≥ 0

w0 + w1 · 0 + w2 · 0 < 0 =⇒ w0 < 0

w0 + w1 · 0 + w2 · 1 ≥ 0 =⇒ w2 ≥ −w0

w0 + w1 · 1 + w2 · 0 ≥ 0 =⇒ w1 ≥ −w0

w0 + w1 · 1 + w2 · 1 ≥ 0 =⇒ w1 + w2 ≥ −w0

• One possible solution to this set of inequalities is
w0 = −1, w1 = 1.1, , w2 = 1.1 (and various
other solutions are possible)

x1

x2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

−1 + 1.1x1 + 1.1x2 = 0

• Note that we can come up with
a similar set of inequalities and
find the value of θ for a McCul-
loch Pitts neuron also

(Try it!)
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w0 + w1 · 1 + w2 · 0 ≥ 0 =⇒ w1 ≥ −w0

w0 + w1 · 1 + w2 · 1 ≥ 0 =⇒ w1 + w2 ≥ −w0

• One possible solution to this set of inequalities is
w0 = −1, w1 = 1.1, , w2 = 1.1 (and various
other solutions are possible)

x1

x2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

−1 + 1.1x1 + 1.1x2 = 0

• Note that we can come up with
a similar set of inequalities and
find the value of θ for a McCul-
loch Pitts neuron also (Try it!)
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Module 2.4: Errors and Error Surfaces
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• Let us fix the threshold (−w0 = 1) and try differ-
ent values of w1, w2

• Say, w1 = −1, w2 = −1
• What is wrong with this line?

We make an error
on 1 out of the 4 inputs

• Lets try some more values ofw1, w2 and note how
many errors we make

w1 w2 errors

-1 -1 3
1.5 0 1

0.45 0.45 3

• We are interested in those values of w0, w1, w2

which result in 0 error

• Let us plot the error surface corresponding to dif-
ferent values of w0, w1, w2

x1

x2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

−1 + 1.1x1 + 1.1x2 = 0

−1 + (−1)x1 + (−1)x2 = 0

−1 + (1.5)x1 + (0)x2 = 0

−1 + (0.45)x1 + (0.45)x2 = 0
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• For ease of analysis, we will keepw0 fixed
(-1) and plot the error for different values
of w1, w2

• For a given w0, w1, w2 we will compute
−w0 + w1 ∗ x1 + w2 ∗ x2 for all com-
binations of (x1, x2) and note down how
many errors we make

• For the OR function, an error occurs if
(x1, x2) = (0, 0) but −w0 + w1 ∗ x1 +
w2 ∗ x2 ≥ 0 or if (x1, x2) 6= (0, 0) but
−w0 + w1 ∗ x1 + w2 ∗ x2 < 0

• We are interested in finding an algorithm
which finds the values of w1, w2 which
minimize this error
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Module 2.5: Perceptron Learning Algorithm

31



• We will now see a more principled approach for learning these weights and threshold
but before that let us answer this question...

• Apart from implementing boolean functions (which does not look very interesting)
what can a perceptron be used for ?

• Our interest lies in the use of perceptron as a binary classifier. Let us see what this
means...
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x0 = 1 x1 x2 .. .. xn

y

w0 = −θ w1 w2 .. .. wn

• Let us reconsider our problem of deciding whether
to watch a movie or not

• Suppose we are given a list of m movies and a la-
bel (class) associated with each movie indicating
whether the user liked this movie or not : binary
decision

• Further, suppose we represent each movie with n
features (some boolean, some real valued)

• We will assume that the data is linearly separable
and we want a perceptron to learn how to make
this decision

• In other words, we want the perceptron to find the
equation of this separating plane (or find the val-
ues of w0, w1, w2, .., wm)
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... ...

xn = criticsRating(scaled to 0 to 1)
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Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
Initialize w randomly;
while !convergence do

Pick random x ∈ P ∪N ;
if x ∈ P and

∑n
i=0wi ∗ xi < 0 then

w = w + x ;

end
if x ∈ N and

∑n
i=0wi ∗ xi ≥ 0 then

w = w − x ;

end

end
//the algorithm converges when all the inputs

are classified correctly

• Why would this work ?

• To understand why this works we
will have to get into a bit of Linear
Algebra and a bit of geometry...
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• Consider two vectors w and x

• We can thus rewrite the perceptron rule
as

• We are interested in finding the line
wTx = 0 which divides the input space
into two halves

• Every point (x) on this line satisfies the
equation wTx = 0

• What can you tell about the angle (α)
between w and any point (x) which lies
on this line ?

• The angle is 90° (∵ cosα = wT x
||w||||x|| = 0)

• Since the vector w is perpendicular to
every point on the line it is actually per-
pendicular to the line itself
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• Consider some points (vectors) which lie in the
positive half space of this line (i.e., wTx ≥ 0)

• What will be the angle between any such vector
and w ?

• What about points (vectors) which lie in the neg-
ative half space of this line (i.e., wTx < 0)

• What will be the angle between any such vector
and w ?

• Of course, this also follows from the formula
(cosα = wT x

||w||||x|| )

• Keeping this picture in mind let us revisit the al-
gorithm

x1

x2

p1

p2

p3

n1

n2 n3

w

wTx = 0
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Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
Initialize w randomly;
while !convergence do

Pick random x ∈ P ∪N ;
if x ∈ P and w.x < 0 then

w = w + x ;
end
if x ∈ N and w.x ≥ 0 then

w = w − x ;
end

end
//the algorithm converges when all the inputs

are classified correctly

cosα =
wTx

||w||||x||

• For x ∈ P if w.x < 0 then it means
that the angle (α) between this x

and the current w is greater than
90°

(but we want α to be less than
90°)

• What happens to the new angle
(αnew) when wnew = w + x

cos(αnew) ∝ wnew
Tx

∝ (w + x)Tx

∝ wTx+ xTx

∝ cosα+ xTx

cos(αnew) > cosα

• Thus αnew will be less than α and
this is exactly what we want
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cosα =
wTx

||w||||x||

• For x ∈ N if w.x ≥ 0 then it means
that the angle (α) between this x

and the current w is less than 90°
(but we want α to be greater than
90°)

• What happens to the new angle
(αnew) when wnew = w − x

cos(αnew) ∝ wnew
Tx

∝ (w − x)Tx

∝ wTx− xTx

∝ cosα− xTx

cos(αnew) < cosα

• Thusαnew will be greater thanα and
this is exactly what we want
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• We will now see this algorithm in action for a toy dataset
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• We initialized w to a random value

• We observe that currently, w · x < 0 (∵ angle >
90°) for all the positive points and w · x ≥ 0 (∵
angle < 90°) for all the negative points (the situ-
ation is exactly oppsite of what we actually want
it to be)

• We now run the algorithm by randomly going over
the points

• The algorithm has converged
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Module 2.6: Proof of Convergence
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• Now that we have some faith and intuition about why the algorithm works, we will see
a more formal proof of convergence ...
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Theorem
Definition: Two sets P and N of points in an n-dimensional space are called absolutely
linearly separable if

n + 1 real numbers w0, w1, ..., wn exist such that every point
(x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point (x1, x2, ..., xn) ∈ N

satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron learning
algorithm updates the weight vector wt a finite number of times. In other words: if the
vectors in P and N are tested cyclically one after the other, a weight vector wt is found
after a finite number of steps t which can separate the two sets.

Proof: On the next slide
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Setup:

• If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

• We can thus consider a single
set P ′ = P ∪N− and for every
element p ∈ P ′ ensure that
wT p ≥ 0

• Further we will normalize all the
p’s so that ||p|| = 1 (notice that
this does not affect the solu-
tion ∵ if wT p

||p|| ≥ 0 then
wT p ≥ 0)

• Let w∗ be the normalized solu-
tion vector (we know one exists
as the data is linearly separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are

classified correctly
//notice that we do not need the other if condition

because by construction we want all points in P ′ to lie
in the positive half space w.p ≥ 0
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Observations:

• w∗ is some optimal solution
which exists but we don’t know
what it is

• We do not make a correction at
every time-step

• We make a correction only ifwT ·
pi ≤ 0 at that time step

• So at time-step t we would have
made only k (≤ t) corrections

• Every time we make a correction
a quantity δ gets added to the nu-
merator

• So by time-step t, a quantity kδ
gets added to the numerator

Proof:

• Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

• We make a correction wt+1 = wt + pi

• Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1

= w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)
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Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)
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Proof (continued:)
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w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 ≤ ||w0||2 + k (By same observation that we made about δ)

cosβ ≥ w∗ · w0 + kδ√
||w0||2 + k

• cosβ thus grows proportional to
√
k

• As k (number of corrections) increases cosβ can become arbitrarily large

• But since cosβ ≤ 1, k must be bounded by a maximum number

• Thus, there can only be a finite number of corrections (k) to w and the algorithm will
converge!
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Coming back to our questions ...

• What about non-boolean (say, real) inputs?

Real valued inputs are allowed in per-
ceptron

• Do we always need to hand code the threshold?

No, we can learn the threshold

• Are all inputs equal? What if we want to assign more weight (importance) to some
inputs?

A perceptron allows weights to be assigned to inputs

• What about functions which are not linearly separable ?

Not possible with a single
perceptron but we will see how to handle this ..
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Module 2.7: Linearly Separable Boolean Functions
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• So what do we do about functions which are not linearly separable ?

• Let us see one such simple boolean function first ?
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x1 x2 XOR

0 0 0 w0 +
∑2

i=1wixi < 0

1 0 1 w0 +
∑2

i=1wixi ≥ 0

0 1 1 w0 +
∑2

i=1wixi ≥ 0

1 1 0 w0 +
∑2

i=1wixi < 0

w0 + w1 · 0 + w2 · 0 < 0 =⇒ w0 < 0

w0 + w1 · 0 + w2 · 1 ≥ 0 =⇒ w2 ≥ −w0

w0 + w1 · 1 + w2 · 0 ≥ 0 =⇒ w1 ≥ −w0

w0 + w1 · 1 + w2 · 1 < 0 =⇒ w1 + w2 < −w0

• The fourth condition contradicts conditions 2 and
3

• Hence we cannot have a solution to this set of in-
equalities

x1

x2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

• And indeed you can see that it is
impossible to draw a line which
separates the red points from
the blue points
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• Most real world data is not linearly separable and
will always contain some outliers

• In fact, sometimes there may not be any outliers
but still the data may not be linearly separable

• We need computational units (models) which can
deal with such data

• While a single perceptron cannot deal with such
data, we will show that a network of perceptrons
can indeed deal with such data
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• Before seeing how a network of perceptrons can deal with linearly inseparable data, we
will discuss boolean functions in some more detail ...
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• How many boolean functions can you design from 2 inputs ?

• Let us begin with some easy ones which you already know ..

x1 x2 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

• Of these, how many are linearly separable ?

(turns out all except XOR and !XOR - feel
free to verify)

• In general, how many boolean functions can you have for n inputs ?

22
n

• How many of these 22
n

functions are not linearly separable ?

For the time being, it
suffices to know that at least some of these may not be linearly inseparable (I encourage
you to figure out the exact answer :-) )
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you to figure out the exact answer :-) )
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Module 2.8: Representation Power of a Network of Perceptrons
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• We will now see how to implement any boolean function using a network of per-
ceptrons ...
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x1 x2

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• For this discussion, we will assume True = +1
and False = -1

• We consider 2 inputs and 4 perceptrons

• Each input is connected to all the 4 per-
ceptrons with specific weights

• The bias (w0) of each perceptron is -2 (i.e.,
each perceptron will fire only if the weighted
sum of its input is≥ 2)

• Each of these perceptrons is connected to an
output perceptron by weights (which need to
be learned)

• The output of this perceptron (y) is the out-
put of this network
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x1 x2

h1 h2 h3 h4

bias =-2
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w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

Terminology:

• This network contains 3 layers

• The layer containing the inputs (x1, x2) is
called the input layer

• The middle layer containing the 4 perceptrons
is called the hidden layer

• The final layer containing one output neuron
is called the output layer

• The outputs of the 4 perceptrons in the hid-
den layer are denoted by h1, h2, h3, h4

• The red and blue edges are called layer 1
weights

• w1, w2, w3, w4 are called layer 2 weights
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x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• We claim that this network can be used to im-
plement any boolean function (linearly separ-
able or not) !

• In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean func-
tion can be represented by this network

• Astonishing claim!

Well, not really, if you un-
derstand what is going on

• Each perceptron in the middle layer fires only
for a specific input (and no two perceptrons
fire for the same input)

• Let us see why this network works by taking
an example of the XOR function

59



x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• We claim that this network can be used to im-
plement any boolean function (linearly separ-
able or not) !

• In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean func-
tion can be represented by this network

• Astonishing claim!

Well, not really, if you un-
derstand what is going on

• Each perceptron in the middle layer fires only
for a specific input (and no two perceptrons
fire for the same input)

• Let us see why this network works by taking
an example of the XOR function

59



x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• We claim that this network can be used to im-
plement any boolean function (linearly separ-
able or not) !

• In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean func-
tion can be represented by this network

• Astonishing claim!

Well, not really, if you un-
derstand what is going on

• Each perceptron in the middle layer fires only
for a specific input (and no two perceptrons
fire for the same input)

• Let us see why this network works by taking
an example of the XOR function

59



x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• We claim that this network can be used to im-
plement any boolean function (linearly separ-
able or not) !

• In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean func-
tion can be represented by this network

• Astonishing claim! Well, not really, if you un-
derstand what is going on

• Each perceptron in the middle layer fires only
for a specific input (and no two perceptrons
fire for the same input)

• Let us see why this network works by taking
an example of the XOR function

59



x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• We claim that this network can be used to im-
plement any boolean function (linearly separ-
able or not) !

• In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean func-
tion can be represented by this network

• Astonishing claim! Well, not really, if you un-
derstand what is going on

• Each perceptron in the middle layer fires only
for a specific input (and no two perceptrons
fire for the same input)

• Let us see why this network works by taking
an example of the XOR function

59



x1 x2

h1 h2 h3 h4

-1,-1

-1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• We claim that this network can be used to im-
plement any boolean function (linearly separ-
able or not) !
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• We claim that this network can be used to im-
plement any boolean function (linearly separ-
able or not) !

• In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean func-
tion can be represented by this network

• Astonishing claim! Well, not really, if you un-
derstand what is going on

• Each perceptron in the middle layer fires only
for a specific input (and no two perceptrons
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• We claim that this network can be used to im-
plement any boolean function (linearly separ-
able or not) !

• In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean func-
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derstand what is going on
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• Let us see why this network works by taking
an example of the XOR function
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• Let w0 be the bias output of the neuron (i.e.,
it will fire if

∑4
i=1wihi ≥ w0)

x1 x2 XOR h1 h2 h3 h4
∑4

i=1 wihi

0 0 0 1 0 0 0 w1

0 1 1 0 1 0 0 w2

1 0 1 0 0 1 0 w3

1 1 0 0 0 0 1 w4

• This results in the following four conditions to
implement XOR: w1 < w0, w2 ≥ w0, w3 ≥
w0, w4 < w0

• Unlike before, there are no contradictions now
and the system of inequalities can be satisfied

• Essentially each wi is now responsible for one of
the 4 possible inputs and can be adjusted to get
the desired output for that input
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the desired output for that input
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• It should be clear that the same network
can be used to represent the remaining 15
boolean functions also

• Each boolean function will result in a dif-
ferent set of non-contradicting inequalities
which can be satisfied by appropriately set-
ting w1, w2, w3, w4

• Try it!

61



x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• It should be clear that the same network
can be used to represent the remaining 15
boolean functions also

• Each boolean function will result in a dif-
ferent set of non-contradicting inequalities
which can be satisfied by appropriately set-
ting w1, w2, w3, w4

• Try it!

61



x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

• It should be clear that the same network
can be used to represent the remaining 15
boolean functions also

• Each boolean function will result in a dif-
ferent set of non-contradicting inequalities
which can be satisfied by appropriately set-
ting w1, w2, w3, w4

• Try it!

61



• What if we have more than 3 inputs ?
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• Again each of the 8 perceptorns will fire only for one of the 8 inputs

• Each of the 8 weights in the second layer is responsible for one of the 8 inputs and can
be adjusted to produce the desired output for that input

x1 x2 x3

bias =-3

y

w1 w2 w3 w4 w5 w6 w7 w8
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• What if we have n inputs ?
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Theorem
Any boolean function of n inputs can be represented exactly by a network of perceptrons
containing 1 hidden layer with 2n perceptrons and one output layer containing 1

perceptron

Proof (informal:) We just saw how to construct such a network

Note: A network of 2n + 1 perceptrons is not necessary but sufficient. For example, we
already saw how to represent AND function with just 1 perceptron

Catch: As n increases the number of perceptrons in the hidden layers obviously increases
exponentially
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• Again, why do we care about boolean functions ?

• How does this help us with our original problem: which was to predict whether we like
a movie or not?

Let us see!
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x1 x2 x3

bias =-3

y

w1 w2 w3 w4 w5 w6 w7 w8

p1

p2
...
n1

n2
...



x11 x12 . . . x1n y1 = 1

x21 x22 . . . x2n y2 = 1
...

...
...

...
...

xk1 xk2 . . . xkn yi = 0

xj1 xj2 . . . xjn yj = 0
...

...
...

...
...



• We are given this data about our past movie ex-
perience

• For each movie, we are given the values of the vari-
ous factors (x1, x2, . . . , xn) that we base our de-
cision on and we are also also given the value of y
(like/dislike)

• pi’s are the points for which the output was 1 and
ni’s are the points for which it was 0

• The data may or may not be linearly separable

• The proof that we just saw tells us that it is pos-
sible to have a network of perceptrons and learn
the weights in this network such that for any given
pi ornj the output of the network will be the same
as yi or yj (i.e., we can separate the positive and
the negative points)
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The story so far ...

• Networks of the form that we just saw (containing, an input, output and one or more
hidden layers) are called Multilayer Perceptrons (MLP, in short)

• More appropriate terminology would be“Multilayered Network of Perceptrons” but
MLP is the more commonly used name

• The theorem that we just saw gives us the representation power of a MLP with a single
hidden layer

• Specifically, it tells us that a MLP with a single hidden layer can represent any boolean
function
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