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Chapter 1: Biological Neurons
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Reticular Theory
Joseph von Gerlach proposed that the ner-
vous system is a single continuous network
as opposed to a network of many discrete
cells!
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Staining Technique
Camillo Golgi discovered a chemical reaction
that allowed him to examine nervous tissue
in much greater detail than ever before

He was a proponent of Reticular theory.
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Neuron Doctrine
Santiago Ramón y Cajal used Golgi’s tech-
nique to study the nervous system and pro-
posed that it is actually made up of discrete
individual cells formimg a network (as op-
posed to a single continuous network)
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The Term Neuron
The term neuron was coined by Hein-
rich Wilhelm Gottfried von Waldeyer-Hartz
around 1891.

He further consolidated the Neuron Doc-
trine.
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Nobel Prize
Both Golgi (reticular theory) and Cajal (neu-
ron doctrine) were jointly awarded the 1906
Nobel Prize for Physiology or Medicine, that
resulted in lasting conflicting ideas and con-
troversies between the two scientists.
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The Final Word
In 1950s electron microscopy finally con-
firmed the neuron doctrine by unam-
biguously demonstrating that nerve cells
were individual cells interconnected through
synapses (a network of many individual neu-
rons).
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Chapter 2: From Spring to Winter of AI

Module 2
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McCulloch Pitts Neuron
McCulloch (neuroscientist) and Pitts (logi-
cian) proposed a highly simplified model of
the neuron (1943) [2]
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Perceptron
“the perceptron may eventually be able to
learn, make decisions, and translate lan-
guages” -Frank Rosenblatt
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Perceptron
“the embryo of an electronic computer that
the Navy expects will be able to walk, talk,
see, write, reproduce itself and be conscious
of its existence.” -New York Times
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First generation Multilayer
Perceptrons
Ivakhnenko et. al. [3]
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Perceptron Limitations
In their now famous book “Perceptrons”,
Minsky and Papert outlined the limits of
what perceptrons could do [4]
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AI Winter of connectionism
Almost lead to the abandonment of connec-
tionist AI
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Backpropagation

Discovered and rediscovered several
times throughout 1960’s and 1970’s

Werbos(1982) [5] first used it in the
context of artificial neural networks

Eventually popularized by the work of
Rumelhart et. al. in 1986 [6]
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Gradient Descent
Cauchy discovered Gradient Descent moti-
vated by the need to compute the orbit of
heavenly bodies
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Universal Approximation The-
orem
A multilayered network of neurons with a
single hidden layer can be used to approxi-
mate any continuous function to any desired
precision [7]
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Chapter 3: The Deep Revival

Module 3
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Unsupervised Pre-Training
Hinton and Salakhutdinov described an ef-
fective way of initializing the weights that
allows deep autoencoder networks to learn a
low-dimensional representation of data. [8]

2006

Unsupervised Pre-Training
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Unsupervised Pre-Training
The idea of unsupervised pre-training actu-
ally dates back to 1991-1993 (J. Schmidhu-
ber) when it was used to train a “Very Deep
Learner”
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More insights (2007-2009)
Further Investigations into the effectiveness
of Unsupervised Pre-training
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Success in Handwriting Recog-
nition
Graves et. al. outperformed all entries in an
international Arabic handwriting recognition
competition [9]
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Success in Speech Recognition
Dahl et. al. showed relative error reduction
of 16.0% and 23.2% over a state of the art
system [10]
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New record on MNIST
Ciresan et. al. set a new record on the
MNIST dataset using good old backpropa-
gation on GPUs (GPUs enter the scene) [11]
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First Superhuman Visual Pat-
tern Recognition
D. C. Ciresan et. al. achieved 0.56% error
rate in the IJCNN Traffic Sign Recognition
Competition [12]
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Winning more visual recogni-
tion challenges

Network Error Layers
AlexNet [13] 16.0% 8

ZFNet [14] 11.2% 8

VGGNet [15] 7.3% 19

GoogLeNet [16] 6.7% 22

MS ResNet [17] 3.6% 152!!
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Chapter 4: From Cats to Convolutional Neural Networks

Module 4
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Hubel and Wiesel Experiment
Experimentally showed that each neuron has
a fixed receptive field - i.e. a neuron will
fire only in response to a visual stimuli in a
specific region in the visual space [18]

1959

H and W experiment

1980

Neocognitron
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Neocognitron
Used for Handwritten character recogni-
tion and pattern recognition (Fukushima et.
al.) [19]

1959

H and W experiment

1980

Neocognitron

1989

CNN

1998

LeNet-5

Module 4



11/49

Convolutional Neural Network
Handwriting digit recognition using back-
propagation over a Convolutional Neural
Network (LeCun et. al.) [20]
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LeNet-5
Introduced the (now famous) MNIST
dataset (LeCun et. al.) [21]
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An algorithm inspired by an experiment on cats is today
used to detect cats in videos :-)

Module 4
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Chapter 5: Faster, higher, stronger

Module 5
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Better Optimization Methods
Faster convergence, better accuracies

1983

Nesterov
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Beyond AdamAdam/BatchNorm
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Chapter 6: The Curious Case of Sequences

Module 6
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Sequences

They are everywhere

Time series, speech, music, text, video

Each unit in the sequence interacts
with other units

Need models to capture this
interaction
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Hopfield

1986
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Elman

1991-1994

RNN drawbacks

1997

LSTMs

2014

Seq2Seq-Attention

1991

RL-Attention
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Hopfield Network
Content-addressable memory systems for
storing and retrieving patterns [22]

1982

Hopfield

1986

Jordan

1990

Elman

1991-1994

RNN drawbacks

1997

LSTMs

2014

Seq2Seq-Attention

1991

RL-Attention

Module 6



16/49

Jordan Network
The output state of each time step is fed to
the next time step thereby allowing interac-
tions between time steps in the sequence
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Elman Network
The hidden state of each time step is fed to
the next time step thereby allowing interac-
tions between time steps in the sequence
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Drawbacks of RNNs
Hochreiter et. al. and Bengio et. al.
showed the difficulty in training RNNs (the
problem of exploding and vanishing gradi-
ents)
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Long Short Term Memory
Showed that LSTMs can solve complex long
time lag tasks that could never be solved
before
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Sequence To Sequence Learn-
ing

Initial success in using RNNs/LSTMs
for large scale Sequence To Sequence
Learning Problems

Introduction of Attention which
inspired a lot of research over the next
two years
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RL for Attention
Schmidhuber & Huber proposed RNNs that
use reinforcement learning to decide where
to look
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Beating humans at their own game (literally)

Module 7
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Playing Atari Games

Human-level control through deep
reinforcement learning for playing
Atari Games [23]

2015

DQNs
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DQNs/AlphaGO
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Poker

2017
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Let’s GO

Alpha Go Zero - Best Go player ever,
surpassing human players [24]

GO is more complex than chess
because of number of possible moves

No brute force backtracking unlike
previous chess agents

2015
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2015
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Poker
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Taking a shot at Poker
DeepStack defeated 11 professional poker
players with only one outside the margin of
statistical significance [25]

2015
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Defense of the Ancients

Widely popular game, with complex
strategies, large visual space

Bot was undefeated against many top
professional players

2015

DQNs

2015

DQNs/AlphaGO

2016

Poker

2017

Dota 2
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Chapter 8: The Madness (2013-)

Module 8
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He sat on a chair. Language Modeling

Mikolov et al. (2010) [26]

Kiros et al. (2015) [27]

Kim et al. (2015) [28]

Module 8
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Speech Recognition

Hinton et al. (2012) [29]

Graves et al. (2013) [30]

Chorowski et al. (2015) [31]

Sak et al. (2015) [32]

Module 8
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Machine Translation

Kalchbrenner et al. (2013) [33]

Cho et al. (2014) [34]

Bahdanau et al. (2015) [35]

Jean et al. (2015) [36]

Gulcehre et al. (2015) [37]

Sutskever et al. (2014) [38]

Luong et al. (2015) [39]

Zheng et al. (2017) [40]

Cheng et al. (2016) [41]

Chen et al. (2017) [42]

Firat et al. (2016) [43]

Module 8
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Conversation Modeling

Shang et al. (2015) [44]

Vinyals et al. (2015) [45]

Lowe et al. (2015) [46]

Dodge et al. (2015) [47]

Weston et al. (2016) [48]

Serban et al. (2016) [49]

Bordes et al. (2017) [50]

Serban et al. (2017) [51]
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Question Answering

Hermann et al. (2015) [52]

Chen et al. (2016) [53]

Xiong et al. (2016) [54]

Seo et al. (2016) [55]

Dhingra et al. (2017) [56]

Wang et al. (2017) [57]

Hu et al. (2017) [58]

Module 8
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Object Detection/Recognition

Semantic Segmentation (Long et al,
2015) [59]

Recurrent CNNs (Liang et al.,
2015) [60]

Faster RCNN (Ren et al., 2015) [61]

Inside-Outside Net (Bell et al.,
2015) [62]

YOLO9000 (Redmon et al., 2016) [63]

R-FCN (Dai et al., 2016) [64]

Mask R-CNN (He at al., 2017) [65]

Video Object segmentation (Caelles et
al., 2017) [66]

Module 8



26/49

Visual Tracking

Choi et al. (2017) [67]

Yun et al. (2017) [68]

Alahi et al. (2017) [69]

Module 8
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Image Captioning

Mao et al. (2014) [70]

Mao at al. (2015) [71]

Kiros et al. (2015) [72]

Donahue et al. (2015) [73]

Vinyals et al. (2015) [74]

Karpathy et al. (2015) [75]

Fang et al. (2015) [76]

Chen et al. (2015) [77]

Module 8
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Video Captioning

Donahue et al. (2014) [78]

Venugopalan at al. (2014) [79]

Pan et al. (2015) [80]

Yao et al. (2015) [81]

Rohrbach et al. (2015) [82]

Zhu et al. (2015) [83]

Cho et al. (2015) [34]

Module 8
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Visual Question Answering

Santoro et al. (2017) [84]

Hu at al. (2017) [85]

Johnson et al. (2017) [86]

Ben-younes et al. (2017) [87]

Malinowski et al. (2017) [88]

Kazemi et al. (2016) [89]

Module 8
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Video Question Answering

Tapaswi et. al. 2016 [90]

Zeng et. al. 2016 [91]

Maharaj et. al. 2017 [92]

Zhao et. al. 2017 [93]

Yu Youngjae et. al. 2017 [94]

Xue Hongyang et. al.
2017 [95]

Mazaheri et. al. 2017 [96]

Module 8
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Video Summarization

Chheng 2007 [97]

Ajmal 2012 [98]

Zhang Ke 2016 [99]

Zhong Ji 2017 [100]

Panda 2017 [101]

Module 8
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Generating Authentic Photos

Variational Autoencoders
(Kingma et. al., 2013) [102]

Generative Adversarial
Networks (Goodfellow et. al.,
2014) [103]

Plug & Play generative nets
(Nguyen et al., 2016) [104]

Progressive Growing of GANs
(Karras et al., 2017) [105]

Module 8
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Generating Raw Audio

Wavenets (Oord et. al.,
2016) [106]

Module 8
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Pixel RNNs

(Oord et al., 2016) [107]

(Oord et al., 2016) [108]

(Salimans et al., 2017) [109]

Module 8
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Chapter 9: (Need for) Sanity

Module 9
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The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding
gradients)

sharp minima (leading to overfitting)

non-robustness (see figure)

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf

Module 9

https://arxiv.org/pdf/1710.05468.pdf


36/49

The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding
gradients)

sharp minima (leading to overfitting)

non-robustness (see figure)

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf

Module 9

https://arxiv.org/pdf/1710.05468.pdf


36/49

The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding
gradients)

sharp minima (leading to overfitting)

non-robustness (see figure)

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf

Module 9

https://arxiv.org/pdf/1710.05468.pdf


36/49

The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding
gradients)

sharp minima (leading to overfitting)

non-robustness (see figure)

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf

Module 9

https://arxiv.org/pdf/1710.05468.pdf


36/49

The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding
gradients)

sharp minima (leading to overfitting)

non-robustness (see figure)

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf

Module 9

https://arxiv.org/pdf/1710.05468.pdf


36/49

The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding
gradients)

sharp minima (leading to overfitting)

non-robustness (see figure)

No clear answers yet but ...

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf

Module 9

https://arxiv.org/pdf/1710.05468.pdf


36/49

The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding
gradients)

sharp minima (leading to overfitting)

non-robustness (see figure)

No clear answers yet but ...

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf

Module 9

https://arxiv.org/pdf/1710.05468.pdf


36/49

The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding
gradients)

sharp minima (leading to overfitting)

non-robustness (see figure)

No clear answers yet but ...

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf

Module 9

https://arxiv.org/pdf/1710.05468.pdf


37/49

https://github.com/kjw0612/awesome-rnn

Module 9

https://github.com/kjw0612/awesome-rnn


38/49
iSource: https://www.cbinsights.com/blog/deep-learning-ai-startups-market-map-company-list/

Module 9



39/49

References I

[1] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

[2] W.S.McCulloch and W.Pitts. A logival calculus of the ideas imminent in nervous activity. 1943.

[3] A.G. Ivakhnenko and V.G. Lapa. Cybernetic predicting devices. 1965.

[4] M.Minsky and S.Papert. Perceptrons. 1969.

[5] P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In Proceedings of the 10th IFIP Conference, 31.8 - 4.9, NYC, pages
762–770, 1981.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L.
McClelland, editors, Parallel Distributed Processing, volume 1, pages 318–362. MIT Press, 1986.

[7] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural Networks,
2(5):359–366, 1989.

[8] Ruslan Salakhutdinov and Geoffrey Hinton. An efficient learning procedure for deep boltzmann machines. Neural Comput., 24(8):1967–2006,
August 2012.

[9] Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 545–552. Curran Associates,
Inc., 2009.

[10] G. E. Dahl, Dong Yu, Li Deng, and A. Acero. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition.
Trans. Audio, Speech and Lang. Proc., 20(1):30–42, January 2012.

[11] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. Deep big simple neural nets excel on handwritten digit
recognition. CoRR, abs/1003.0358, 2010.

[12] Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks for image classification. CoRR, abs/1202.2745,
2012.

Module 9



40/49

References II

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[14] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[16] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[18] D. H. Wiesel and T. N. Hubel. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol., 148:574–591, 1959.

[19] K. Fukushima. Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36(4):193–202, 1980.

[20] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Back-propagation applied to handwritten zip
code recognition. Neural Computation, 1(4):541–551, 1989.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, November 1998.

[22] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of
Sciences, 79:2554–2558, 1982.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[24] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.
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