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Module 10.1: One-hot representations of words
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Model

[5.7, 1.2, 2.3, -10.2, 4.5, ..., 11.9, 20.1, -0.5, 40.7]

This is by far AAMIR KHAN’s best one. Finest

casting and terrific acting by all.

Let us start with a very simple mo-
tivation for why we are interested in
vectorial representations of words

Suppose we are given an input stream
of words (sentence, document, etc.)
and we are interested in learning
some function of it (say, ŷ =
sentiments(words))

Say, we employ a machine learning al-
gorithm (some mathematical model)
for learning such a function (ŷ =
f(x))

We first need a way of converting the
input stream (or each word in the
stream) to a vector x (a mathemat-
ical quantity)
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Corpus:

Human machine interface for computer
applications

User opinion of computer system response
time

User interface management system

System engineering for improved response
time

V = [human,machine, interface, for, computer,
applications, user, opinion, of, system, response,
time, management, engineering, improved]

machine: 0 1 0 ... 0 0 0

Given a corpus,

consider the set V
of all unique words across all input
streams (i.e., all sentences or docu-
ments)

V is called the vocabulary of the
corpus (i.e., all sentences or docu-
ments)

We need a representation for every
word in V

One very simple way of doing this is
to use one-hot vectors of size |V |
The representation of the i-th word
will have a 1 in the i-th position and
a 0 in the remaining |V |− 1 positions
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cat: 0 0 0 0 0 1 0

dog: 0 1 0 0 0 0 0

truck: 0 0 0 1 0 0 0

euclid dist(cat,dog) =
√

2

euclid dist(dog, truck) =
√

2

cosine sim(cat,dog) = 0

cosine sim(dog, truck) = 0

Problems:

V tends to be very large (for example,
50K for PTB, 13M for Google 1T cor-
pus)

These representations do not capture
any notion of similarity

Ideally, we would want the represent-
ations of cat and dog (both domestic
animals) to be closer to each other
than the representations of cat and
truck

However, with 1-hot representations,
the Euclidean distance between any
two words in the vocabulary in

√
2

And the cosine similarity between
any two words in the vocabulary is
0
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Module 10.2: Distributed Representations of words
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A bank is a financial institution that accepts
deposits from the public and creates credit.

The idea is to use the accompanying words
(financial, deposits, credit) to represent bank

You shall know a word by the com-
pany it keeps - Firth, J. R. 1957:11

Distributional similarity based rep-
resentations

This leads us to the idea of co-
occurrence matrix
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Corpus:

Human machine interface for computer ap-
plications

User opinion of computer system response
time

User interface management system

System engineering for improved response
time

human machine system for ... user
human 0 1 0 1 ... 0
machine 1 0 0 1 ... 0
system 0 0 0 1 ... 2

for 1 1 1 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 2 0 ... 0

Co-occurence Matrix

A co-occurrence matrix is a terms×
terms matrix which captures the
number of times a term appears in
the context of another term

The context is defined as a window of
k words around the terms

Let us build a co-occurrence matrix
for this toy corpus with k = 2

This is also known as a word ×
context matrix

You could choose the set of words
and contexts to be same or different

Each row (column) of the co-
occurrence matrix gives a vectorial
representation of the corresponding
word (context)
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human machine system for ... user
human 0 1 0 1 ... 0
machine 1 0 0 1 ... 0
system 0 0 0 1 ... 2

for 1 1 1 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .
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Some (fixable) problems

Stop words (a, the, for, etc.) are very
frequent → these counts will be very
high

Solution 1: Ignore very frequent
words

Solution 2: Use a threshold t (say, t
= 100)

Xij = min(count(wi, cj), t),

where w is word and c is context.
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human machine system for ... user
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human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

Some (fixable) problems

Solution 3: Instead of count(w, c) use
PMI(w, c)

PMI(w, c) = log
p(c|w)

p(c)

= log
count(w, c) ∗N

count(c) ∗ count(w)

N is the total number of words

If count(w, c) = 0, PMI(w, c) = −∞

Instead use,

PMI0(w, c) = PMI(w, c) if count(w, c) > 0

= 0 otherwise

or

PPMI(w, c) = PMI(w, c) if PMI(w, c) > 0

= 0 otherwise
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Module 10.3: SVD for learning word representations
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 X


m×n

=


↑ · · · ↑

u1 · · · uk
↓ · · · ↓


m×k

σ1

. . .

σk


k×k

← vT1 →
...

← vTk →


k×n

Singular Value Decomposition
gives a rank k approximation of
the original matrix

X = XPPMIm×n = Um×kΣk×kV
T
k×n

XPPMI (simplifying notation to
X) is the co-occurrence matrix
with PPMI values

SVD gives the best rank-k ap-
proximation of the original data
(X)

Discovers latent semantics in the
corpus (let us examine this with
the help of an example)
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 X


m×n

=


↑ · · · ↑

u1 · · · uk
↓ · · · ↓


m×k

σ1

. . .

σk


k×k

← vT1 →
...

← vTk →


k×n

= σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

Notice that the product can be
written as a sum of k rank-1
matrices

Each σiuiv
T
i ∈ Rm×n because it

is a product of a m × 1 vector
with a 1× n vector

If we truncate the sum at σ1u1v
T
1

then we get the best rank-1 ap-
proximation of X

(By SVD the-
orem! But what does this mean?
We will see on the next slide)

If we truncate the sum at
σ1u1v

T
1 +σ2u2v

T
2 then we get the

best rank-2 approximation of X
and so on
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 X


m×n

=


↑ · · · ↑

u1 · · · uk
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...

← vTk →


k×n

= σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

What do we mean by approxim-
ation here?

Notice that X has m× n entries

When we use he rank-1 approx-
imation we are using only n +
m+ 1 entries to reconstruct [u ∈
Rm, v ∈ Rn, σ ∈ R1]

But SVD theorem tells us that
u1,v1 and σ1 store the most in-
formation in X (akin to the prin-
cipal components in X)

Each subsequent term (σ2u2v
T
2 ,

σ3u3v
T
3 , . . . ) stores less and less

important information
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verylight︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 0 1 1 0 1 1

light︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 1 0 1 0 1 1

dark︷ ︸︸ ︷ green︷ ︸︸ ︷
0 1 0 0 1 0 1 1

verydark︷ ︸︸ ︷ green︷ ︸︸ ︷
1 0 0 0 1 0 1 1

As an analogy consider the case when
we are using 8 bits to represent colors

The representation of very light, light,
dark and very dark green would look
different

But now what if we were asked to com-
press this into 4 bits? (akin to com-
pressing m ×m values into m + m + 1
values on the previous slide)

We will retain the most important 4
bits and now the previously (slightly)
latent similarity between the colors now
becomes very obvious

Something similar is guaranteed by
SVD (retain the most important in-
formation and discover the latent sim-
ilarities between words)
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human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

Co-occurrence Matrix (X)

human machine system for ... user
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Recall that earlier each row of the original
matrix X served as the representation of a
word

Then XXT is a matrix whose ij-th entry is
the dot product between the representation
of word i (X[i :]) and word j (X[j :])

X[i :]

X[j :]

 1 2 3
2 1 0
1 3 5


︸ ︷︷ ︸

X

 1 2 1
2 1 3
3 0 5


︸ ︷︷ ︸

XT

=

. . 22
. . .
. . .


︸ ︷︷ ︸

XXT

The ij-th entry of XXT thus (roughly)
captures the cosine similarity between
wordi, wordj
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X̂ =

human machine system for ... user
human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

X̂X̂T =

human machine system for ... user
human 25.4 25.4 7.6 21.9 ... 6.84
machine 25.4 25.4 7.6 21.9 ... 6.84
system 7.6 7.6 24.8 18.03 ... 20.6

for 21.9 21.9 0.96 24.6 ... 15.32
. . . . . . .
. . . . . . .
. . . . . . .

user 6.84 6.84 20.6 15.32 ... 17.11

cosine sim(human, user) = 0.33

Once we do an SVD what is a
good choice for the representation of
wordi?

Obviously, taking the i-th row of the
reconstructed matrix does not make
sense because it is still high dimen-
sional

But we saw that the reconstructed
matrix X̂ = UΣV T discovers latent
semantics and its word representa-
tions are more meaningful

Wishlist: We would want represent-
ations of words (i, j) to be of smal-
ler dimensions but still have the same
similarity (dot product) as the corres-
ponding rows of X̂
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similarity = 0.33

Notice that the dot product between the
rows of the the matrix Wword = UΣ is the
same as the dot product between the rows
of X̂

X̂X̂T = (UΣV T )(UΣV T )T

= (UΣV T )(V ΣUT )

= UΣΣTUT (∵ V TV = I)

= UΣ(UΣ)T = WwordW
T
word

Conventionally,

Wword = UΣ ∈ Rm×k

is taken as the representation of the m words
in the vocabulary and

Wcontext = V

is taken as the representation of the context
words
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Module 10.4: Continuous bag of words model
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The methods that we have seen so far are called count based models because
they use the co-occurrence counts of words

We will now see methods which directly learn word representations (these are
called (direct) prediction based models)
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The story ahead ...

Continuous bag of words model

Skip gram model with negative sampling (the famous word2vec)

GloVe word embeddings

Evaluating word embeddings

Good old SVD does just fine!!
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Sometime in the 21st century, Joseph Cooper,
a widowed former engineer and former NASA

pilot, runs a farm with his father-in-law Donald,
son Tom, and daughter Murphy, It is post-truth
society ( Cooper is reprimanded for telling
Murphy that the Apollo missions did indeed
happen) and a series of crop blights threatens hu-

manity’s survival. Murphy believes her bedroom

is haunted by a poltergeist. When a pattern

is created out of dust on the floor, Cooper
realizes that gravity is behind its formation,
not a ”ghost”. He interprets the pattern as
a set of geographic coordinates formed into
binary code. Cooper and Murphy follow the
coordinates to a secret NASA facility, where they
are met by Cooper’s former professor, Dr. Brand.

Some sample 4 word windows from a corpus

Consider this Task: Predict n-th
word given previous n-1 words

Example: he sat on a chair

Training data: All n-word windows
in your corpus

Training data for this task is easily
available (take all n word windows
from the whole of wikipedia)

For ease of illustration, we will first
focus on the case when n = 2 (i.e.,
predict second word based on first
word)
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We will now try to answer these two questions:

How do you model this task?

What is the connection between this task and learning word representations?
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h ∈ Rk

Wword ∈ Rk×|V |

x ∈ R|V |

Wcontext ∈

Rk×|V |

We will model this problem using a
feedforward neural network

Input: One-hot representation of the
context word

Output: There are |V | words
(classes) possible and we want to pre-
dict a probability distribution over
these |V | classes (multi-class classific-
ation problem)

Parameters: Wcontext ∈ Rk×|V | and
Wword ∈ Rk×|V |
(we are assuming that the set of
words and context words is the
same: each of size |V |)
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h ∈ Rk

Wword ∈ Rk×|V |

x ∈ R|V |

Wcontext ∈

Rk×|V |

What is the product Wcontextx given that x
is a one hot vector

It is simply the i-th column of Wcontext −1 0.5 2
3 −1 −2
−2 1.7 3

 0

1
0

 =

0.5
−1
1.7


So when the ith word is present the ith ele-
ment in the one hot vector is ON and the ith

column of Wcontext gets selected

In other words, there is a one-to-one corres-
pondence between the words and the column
of Wcontext

More specifically, we can treat the i-th
column of Wcontext as the representation of
context i
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Wword ∈ Rk×|V |

x ∈ R|V |

Wcontext ∈

Rk×|V |

P (on|sat) =
e(Wwordh)[i]∑
j e

(Wwordh)[j]

How do we obtain P (on|sat)? For this multi-
class classification problem what is an appro-
priate output function?

(softmax)

Therefore, P (on|sat) is proportional to the
dot product between jth column of Wcontext

and ith column of Wword

P (word = i|sat) thus depends on the ith

column of Wword

We thus treat the i-th column of Wword as
the representation of word i

Hope you see an analogy with SVD! (there
we had a different way of learning Wcontext

and Wword but we saw that the ith column
of Wword corresponded to the representa-
tion of the ith word)

Now that we understood the interpretation
of Wcontext and Wword, our aim now is to
learn these parameters
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How do we obtain P (on|sat)? For this multi-
class classification problem what is an appro-
priate output function? (softmax)

Therefore, P (on|sat) is proportional to the
dot product between jth column of Wcontext

and ith column of Wword

P (word = i|sat) thus depends on the ith

column of Wword

We thus treat the i-th column of Wword as
the representation of word i

Hope you see an analogy with SVD! (there
we had a different way of learning Wcontext

and Wword but we saw that the ith column
of Wword corresponded to the representa-
tion of the ith word)

Now that we understood the interpretation
of Wcontext and Wword, our aim now is to
learn these parameters
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We denote the context word (sat) by the in-
dex c and the correct output word (on) by
the index w

For this multiclass classification problem
what is an appropriate output function (ŷ =
f(x)) ?

softmax

What is an appropriate loss function?

cross
entropy

L (θ) = − log ŷw = − logP (w|c)
h = Wcontext · xc = uc

ŷw =
exp(uc · vw)∑

w′∈V exp(uc · vw′)

uc is the column of Wcontext corresponding
to context c and vw is the column of Wword

corresponding to context w
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ŷw =
exp(uc · vw)∑

w′∈V exp(uc · vw′)

uc is the column of Wcontext corresponding
to context c and vw is the column of Wword

corresponding to context w

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



30/70

0 1 0 ... 0 0 0

sat

. . . . . . . . . .

. . . . . . . . . . . .

P
(h
e
|s
a
t)

P
(c
h
a
ir
|s
a
t)

P
(m
a
n
|s
a
t)

ŷ
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L (θ) = − log ŷw = − logP (w|c)
h = Wcontext · xc = uc
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How do we train this simple feed for-
ward neural network?

backpropaga-
tion

Let us consider one input-output pair
(c, w) and see the update rule for vw
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∇vw = − ∂

∂vw
L (θ)

L (θ) = − log ŷw

= − log
exp(uc · vw)∑

w′∈V exp(uc · vw′)

= −(uc · vw − log
∑
w′∈V

exp(uc · vw′))

∇vw = −(uc −
exp(uc · vw)∑

w′∈V exp(uc · vw′)
· uc)

= −uc(1− ŷw)

And the update rule would be

vw = vw − η∇vw
= vw + ηuc(1− ŷw)
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Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



33/70

0 1 0 ... 0 0 0

sat

. . . . . . . . . .

. . . . . . . . . . . .

P
(h
e
|s
a
t)

P
(c
h
a
ir
|s
a
t)

P
(m
a
n
|s
a
t)

P
(o
n
|s
a
t)

. . . . . . . . .

h ∈ Rk

Wword ∈ Rk×|V |

x ∈ R|V |

Wcontext ∈

Rk×|V |

This update rule has a nice interpret-
ation

vw = vw + ηuc(1− ŷw)

If ŷw → 1 then we are already predict-
ing the right word and vw will not be
updated

If ŷw → 0 then vw gets updated by
adding a fraction of uc to it

This increases the cosine similarity
between vw and uc (How? Refer to
slide 38 of Lecture 2)

The training objective ensures that
the cosine similarity between word
(vw) and context word (uc) is max-
imized
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updated

If ŷw → 0 then vw gets updated by
adding a fraction of uc to it

This increases the cosine similarity
between vw and uc (How? Refer to
slide 38 of Lecture 2)

The training objective ensures that
the cosine similarity between word
(vw) and context word (uc) is max-
imized
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What happens to the representations
of two words w and w′ which tend to
appear in similar context (c)

The training ensures that both vw
and v′w have a high cosine similarity
with uc and hence transitively (intu-
itively) ensures that vw and v′w have a
high cosine similarity with each other

This is only an intuition (reasonable)

Haven’t come across a formal proof
for this!
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In practice, instead of window size of 1 it is
common to use a window size of d

So now,

h =

d−1∑
i=1

uci

[Wcontext,Wcontext] just means that we are
stacking 2 copies of Wcontext matrix

 −1 0.5 2

− 1 0.5 2

3 −1 −2

3 −1 −2

−2 1.7 3

− 2 1.7 3




0

1
0
0
0

1


} sat

}he

=

2.5
−3
4.7



The resultant product would simply be the
sum of the columns corresponding to ‘sat’
and ‘he’
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Of course in practice we will not do this expensive matrix multiplication

If ‘he’ is ith word in the vocabulary and sat is the jth word then we will
simply access columns W[i :] and W[j :] and add them
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Now what happens during backpropagation

Recall that

h =
d−1∑
i=1

uci

and

P (on|sat, he) =
e(wwordh)[k]∑
j e

(wwordh)[j]

where ‘k’ is the index of the word ‘on’

The loss function depends on {Wword, uc1 , uc2 , . . . , ucd−1
} and all these

parameters will get updated during backpropogation

Try deriving the update rule for vw now and see how it differs from the one we
derived before
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h ∈ Rk

Wword ∈

Rk×2|V |

x ∈ R2|V |

[Wcontext,Wcontext] ∈

Rk×2|V |

Some problems:

Notice that the softmax function at
the output is computationally very
expensive

ŷw =
exp(uc · vw)∑

w′∈V exp(uc · vw′)

The denominator requires a summa-
tion over all words in the vocabulary

We will revisit this issue soon
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Module 10.5: Skip-gram model
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The model that we just saw is called the continuous bag of words model (it
predicts an output word give a bag of context words)

We will now see the skip gram model (which predicts context words given an
input word)
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0 0 1 ... 0 0 0

. . . . . . . . . .

he sat a chair

he sat a chair

h ∈ R|k|

Wcontext ∈

Rk×|V |

x ∈ R|V |

Wword ∈ Rk×|V |

Notice that the role of context and
word has changed now

In the simple case when there is only
one context word, we will arrive at
the same update rule for uc as we did
for vw earlier

Notice that even when we have mul-
tiple context words the loss function
would just be a summation of many
cross entropy errors

L (θ) = −
d−1∑
i=1

log ŷwi

Typically, we predict context words
on both sides of the given word
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D = [(sat, on), (sat,
a), (sat, chair), (on,
a), (on,chair), (a,chair),
(on,sat), (a, sat),
(chair,sat), (a, on),
(chair, on), (chair, a) ]

D
′

= [(sat, oxygen),
(sat, magic), (chair,
sad), (chair, walking)]

Let D be the set of all correct (w, c) pairs in the
corpus

Let D
′

be the set of all incorrect (w, r) pairs in
the corpus

D
′

can be constructed by randomly sampling a
context word r which has never appeared with w
and creating a pair (w, r)

As before let vw be the representation of the word
w and uc be the representation of the context word
c
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·

σ

P (z = 1|w, c)

uc vw

For a given (w, c) ∈ D we are interested in max-
imizing

p(z = 1|w, c)

Let us model this probability by

p(z = 1|w, c) = σ(uTc vw)

=
1

1 + e−uTc vw

Considering all (w, c) ∈ D, we are interested in

maximize
θ

∏
(w,c)∈D

p(z = 1|w, c)

where θ is the word representation (vw) and con-
text representation (uc) for all words in our corpus
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·

−

σ

P (z = 0|w, r)

ur vw

For (w, r) ∈ D′ we are interested in maximizing

p(z = 0|w, r)

Again we model this as

p(z = 0|w, r) = 1− σ(uTr vw)

= 1− 1

1 + e−vTr vw

=
1

1 + euTr vw
= σ(−uTr vw)

Considering all (w, r) ∈ D′ , we are interested in

maximize
θ

∏
(w,r)∈D′

p(z = 0|w, r)
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·

−

σ

P (z = 0|w, r)

ur vw

Combining the two we get:

maximize
θ

∏
(w,c)∈D

p(z = 1|w, c)
∏

(w,r)∈D′
p(z = 0|w, r)

=maximize
θ

∏
(w,c)∈D

p(z = 1|w, c)
∏

(w,r)∈D′
(1− p(z = 1|w, r))

=maximize
θ

∑
(w,c)∈D

log p(z = 1|w, c)

+
∑

(w,r)∈D′
log(1− p(z = 1|w, r))

=maximize
θ

∑
(w,c)∈D

log
1

1 + e−v
T
c vw

+
∑

(w,r)∈D′
log

1

1 + ev
T
r vw

=maximize
θ

∑
(w,c)∈D

log σ(vTc vw) +
∑

(w,r)∈D′
log σ(−vTr vw)

where σ(x) = 1
1+e−x
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·

−

σ

P (z = 0|w, r)

ur vw

In the original paper, Mikolov et. al. sample k
negative (w, r) pairs for every positive (w, c) pairs

The size of D
′

is thus k times the size of D

The random context word is drawn from a modi-
fied unigram distribution

r ∼ p(r)
3
4

r ∼ count(r)
3
4

N

N = total number of words in the corpus
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Module 10.6: Contrastive estimation
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0 0 1 ... 0 0 0

. . . . . . . . . .

he sat a chair

h ∈ R|k|

Wcontext ∈

Rk×|V |

x ∈ R|V |

Wword ∈ Rk×|V |

Some problems

Same as bag of words

The softmax function at the output
is computationally expensive

Solution 1: Use negative sampling

Solution 2: Use contrastive estima-
tion

Solution 3: Use hierarchical softmax
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Positive: He sat on a chair

. . . . . . . . . .

vc vw

sat on

Wh ∈

R2d×h

Wout ∈ Rh×|1|

s

We would like s to be greater than sc

Okay, so let us try to maximize s− sc
But we would like the difference to be at
least m

Negative: He sat abracadabra a chair

. . . . . . . . . .

vc vw

sat abracadabra

Wh ∈

R2d×h

Wout ∈ Rh×|1|

sc

So we can maximize s− (sc +m)

What if s > sc + m

(don’t do any thing)

maximize max(0, s− (sc +m))
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Module 10.7: Hierarchical softmax
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0 0 1 ... 0 0 0

. . . . . . . . . .

he sat a chair

h ∈ R|k|

Wcontext ∈

Rk×|V |

x ∈ R|V |

Wword ∈ Rk×|V |

Some problems

Same as bag of words

The softmax function at the output
is computationally expensive

Solution 1: Use negative sampling

Solution 2: Use contrastive estima-
tion

Solution 3: Use hierarchical softmax
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0 1 0 ... 0 0 0

sat

. . . . . . . . . .

. . . 1 . . . . . . . .
max e

vT
c uw∑

|V |
e
vT
c uw

. . . 1 . . . . . . . .

. . . .

π(on)1 = 1

π(on)2 = 0

π(on)3 = 0

u1

u2

uV

on

h = vc

Construct a binary tree such that there are
|V | leaf nodes each corresponding to one
word in the vocabulary

There exists a unique path from the root
node to a leaf node.

Let l(w1), l(w2), ..., l(wp) be the nodes on
the path from root to w

Let π(w) be a binary vector such that:

π(w)k = 1 path branches left at node l(wk)

= 0 otherwise

Finally each internal node is associated with
a vector ui

So the parameters of the module are
Wcontext and u1, u2, . . . , uv (in effect, we
have the same number of parameters as be-
fore)
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0 1 0 ... 0 0 0

sat

. . . . . . . . . .

. . . 1 . . . . . . . .

. . . .

π(on)1 = 1

π(on)2 = 0

π(on)3 = 0

u1

u2

uV

on

h = vc

For a given pair (w, c) we are interested in
the probability p(w|vc)

We model this probability as

p(w|vc) =
∏
k

(π(wk)|vc)

For example

P (on|vsat) = P (π(on)1 = 1|vsat)
∗P (π(on)2 = 0|vsat)
∗P (π(on)3 = 0|vsat)

In effect, we are saying that the probability
of predicting a word is the same as predicting
the correct unique path from the root node
to that word
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0 1 0 ... 0 0 0

sat

. . . . . . . . . .

. . . 1 . . . . . . . .

. . . .

π(on)1 = 1

π(on)2 = 0

π(on)3 = 0

u1

u2

uV

on

h = vc

We model

P (π(on)i = 1) =
1

1 + e−v
T
c ui

P (π(on)i = 0) = 1− P (π(on)i = 1)

P (π(on)i = 0) =
1

1 + ev
T
c ui

The above model ensures that the repres-
entation of a context word vc will have a
high(low) similarity with the representation
of the node ui if ui appears and the path
branches to the left(right) at ui

Again, transitively the representations of
contexts which appear with the same words
will have high similarity
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0 1 0 ... 0 0 0

sat

. . . . . . . . . .

. . . 1 . . . . . . . .

. . . .

π(on)1 = 1

π(on)2 = 0

π(on)3 = 0

u1

u2

uV

on

h = vc

P (w|vc) =

|π(w)|∏
k=1

P (π(wk)|vc)

Note that p(w|vc) can now be com-
puted using |π(w)| computations in-
stead of |V | required by softmax

How do we construct the binary tree?

Turns out that even a random ar-
rangement of the words on leaf nodes
does well in practice
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Module 10.8: GloVe representations
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Count based methods (SVD) rely on global co-occurrence counts from the
corpus for computing word representations

Predict based methods learn word representations using co-occurrence inform-
ation

Why not combine the two (count and learn) ?
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Corpus:
Human machine interface for computer applications

User opinion of computer system response time

User interface management system

System engineering for improved response time

X =

human machine system for ... user
human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

P (j|i) =
Xij∑
Xij

=
Xij
Xi

Xij = Xji

Xij encodes important global information
about the co-occurrence between i and j
(global: because it is computed for the entire
corpus)

Why not learn word vectors which are faith-
ful to this information?

For example, enforce

vTi vj = logP (j|i)
= logXij − log(Xi)

Similarly,

vTj vi = logXij − logXj (Xij = Xji)

Essentially we are saying that we want word
vectors vi and vj such that vTi vj is faithful
to the globally computed P (j|i)
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human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

P (j|i) =
Xij∑
Xij

=
Xij
Xi

Xij = Xji

Xij encodes important global information
about the co-occurrence between i and j
(global: because it is computed for the entire
corpus)

Why not learn word vectors which are faith-
ful to this information?

For example, enforce

vTi vj = logP (j|i)
= logXij − log(Xi)

Similarly,

vTj vi = logXij − logXj (Xij = Xji)

Essentially we are saying that we want word
vectors vi and vj such that vTi vj is faithful
to the globally computed P (j|i)
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P (j|i) =
Xij∑
Xij

=
Xij
Xi

Xij = Xji

Adding the two equations we get

2vTi vj = 2 logXij − logXi − logXj

vTi vj = logXij −
1

2
logXi −

1

2
logXj

Note that logXi and logXj depend only on
the words i & j and we can think of them as
word specific biases which will be learned

vTi vj = logXij − bi − bj
vTi vj + bi + bj = logXij

We can then formulate this as the following
optimization problem

min
vi,vj ,bi,bj

∑
i,j

(vTi vj + bi + bj︸ ︷︷ ︸
predicted value
using model
parameters

− logXij︸ ︷︷ ︸
actual value

computed from
the given corpus

)2
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Xij∑
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Xij = Xji

min
vi,vj ,bi,bj

∑
i,j

(vTi vj + bi + bj − logXij)
2

Drawback: weighs all co-occurrences
equally

Solution: add a weighting function

min
vi,vj ,bi,bj

∑
i,j

f(Xij)(v
T
i vj + bi + bj − logXij)

2

Wishlist: f(Xij) should be such that
neither rare nor frequent words are over-
weighted.

f(x) =

{
( x
xmax

)α, if x < xmax
1, otherwise

}
where α can be tuned for a given dataset
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Module 10.9: Evaluating word representations
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How do we evaluate the learned word representations ?
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Shuman(cat, dog) = 0.8

Smodel(cat, dog) =
vTcatvdog

‖ vcat ‖‖ vdog ‖
= 0.7

Semantic Relatedness

Ask humans to judge the relatedness
between a pair of words

Compute the cosine similarity
between the corresponding word
vectors learned by the model

Given a large number of such
word pairs, compute the correlation
between Smodel & Shuman, and com-
pare different models

Model 1 is better than Model 2 if

correlation(Smodel1, Shuman)

> correlation(Smodel2, Shuman)
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Term : levied

Candidates : {unposed,

believed, requested, correlated}

Synonym : = argmax
c∈C

cosine(vterm, vc)

Synonym Detection

Given: a term and four candidate
synonyms

Pick the candidate which has the
largest cosine similarity with the term

Compute the accuracy of different
models and compare
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brother : sister :: grandson : ?
work : works :: speak : ?

Analogy

Semantic Analogy: Find nearest
neighbour of vsister − vbrother +
vgrandson

Syntactic Analogy: Find nearest
neighbour of vworks − vwork + vspeak
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So which algorithm gives the best result ?

Boroni et.al [2014] showed that predict models consistently outperform count
models in all tasks.

Levy et.al [2015] do a much more through analysis (IMO) and show that good
old SVD does better than prediction based models on similarity tasks but not
on analogy tasks.
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Module 10.10: Relation between SVD & word2Vec
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The story ahead ...

Continuous bag of words model

Skip gram model with negative sampling (the famous word2vec)

GloVe word embeddings

Evaluating word embeddings

Good old SVD does just fine!!
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0 0 1 ... 0 0 0

. . . . . . . . . .

he sat a chair

h ∈ R|k|

Wcontext ∈

Rk×|V |

x ∈ R|V |

Wword ∈ Rk×|V |

Recall that SVD does a matrix factorization
of the co-occurrence matrix

Levy et.al [2015] show that word2vec also
implicitly does a matrix factorization

What does this mean ?

Recall that word2vec gives us Wcontext &
Wword

.

Turns out that we can also show that

M = Wcontext ∗Wword

where

Mij = PMI(wi, ci)− log(k)

k = number of negative samples

So essentially, word2vec factorizes a mat-
rix M which is related to the PMI based
co-occurrence matrix (very similar to what
SVD does)
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