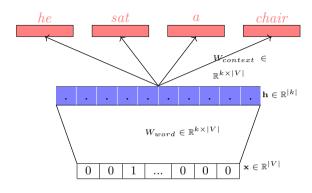
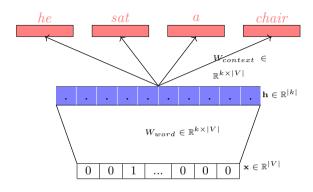
Module 10.10: Relation between SVD & word2Vec

The story ahead ...

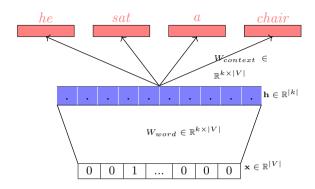
- Continuous bag of words model
- Skip gram model with negative sampling (the famous word2vec)
- GloVe word embeddings
- Evaluating word embeddings
- Good old SVD does just fine!!



 Recall that SVD does a matrix factorization of the co-occurrence matrix

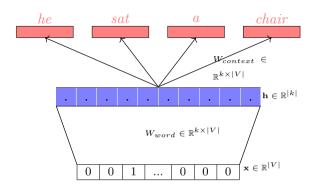


- Recall that SVD does a matrix factorization of the co-occurrence matrix
- Levy et.al [2015] show that word2vec also implicitly does a matrix factorization

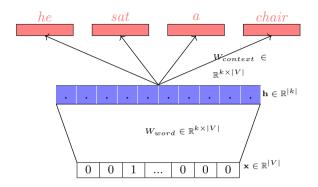


- Recall that SVD does a matrix factorization of the co-occurrence matrix
- Levy et.al [2015] show that word2vec also implicitly does a matrix factorization
- What does this mean?

.



- Recall that SVD does a matrix factorization of the co-occurrence matrix
- Levy et.al [2015] show that word2vec also implicitly does a matrix factorization
- What does this mean?



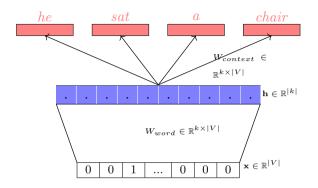
- Recall that SVD does a matrix factorization of the co-occurrence matrix
- Levy et.al [2015] show that word2vec also implicitly does a matrix factorization
- What does this mean?
- Recall that word2vec gives us $W_{context}$ & W_{word} .
- $\bullet\,$ Turns out that we can also show that

$$M = W_{context} * W_{word}$$

where

$$M_{ij} = PMI(w_i, c_i) - log(k)$$

k = number of negative samples



- Recall that SVD does a matrix factorization. of the co-occurrence matrix
- Levy et.al [2015] show that word2vec also implicitly does a matrix factorization
- What does this mean?
- Recall that word2vec gives us $W_{context}$ & W_{word} .
- Turns out that we can also show that

$$M = W_{context} * W_{word}$$

where

$$M_{ij} = PMI(w_i, c_i) - log(k)$$

 $k = \text{number of negative samples}$

• So essentially, word2vec factorizes a matrix M which is related to the PMI based co-occurrence matrix (very similar to what SVD does) $_{4}$ $_{\Box}$ $_{b}$ $_{4}$ $_{\overline{b}}$ $_{b}$ $_{4}$ $_{\overline{b}}$ $_{b}$ $_{4}$ $_{\overline{b}}$ $_{b}$ $_{5}$ $_{5}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$ $_{9}$