Module 10.2: Distributed Representations of words
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o You shall know a word by the com-
pany it keeps - Firth, J. R. 1957:11

A bank is a financial institution that accepts
deposits from the public and creates credit.
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o You shall know a word by the com-
pany it keeps - Firth, J. R. 1957:11

o Distributional similarity based rep-
resentations

o This leads us to the idea of co-
A bank is a financial institution that accepts occurrence matrix

deposits from the public and creates credit.

The idea is to use the accompanying words
(financial, deposits, credit) to represent bank
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Corpus: o
@ A co-occurrence matrix is a terms x

@ Human machine interface for computer ap- terms matrix which captures the
licati . .
phications number of times a term appears in
@ User opinion of computer system response the context of another term
time

@ User interface management system

@ System engineering for improved response
time
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number of times a term appears in
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@ Human machine interface for computer ap-
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time
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@ User interface management system
k words around the terms
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Corpus:

@ A co-occurrence matrix is a terms x
terms matrix which captures the
number of times a term appears in
the context of another term

@ Human machine interface for computer ap-
plications

@ User opinion of computer system response
time
@ The context is defined as a window of

@ User interface management system
k words around the terms

@ System engineering for improved response
time @ Let us build a co-occurrence matrix

for this toy corpus with k = 2

@ This is also known as a word X

human| machine| system| for| ... user
human 0 1 0 1 0 .
machine| 1 0 0 1 0 context matrix
system 0 0 0 1 2
for 1 1 1 0 0
user 0 0 2 0 0

Co-occurence Matrix
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@ User interface management system
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@ This is also known as a word X

human| machine| system| for | ... | user

human |0 . 0 : 0 context matrix
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@ A co-occurrence matrix is a terms x

@ Human machine interface for computer ap- terms matrix which captures the
lications . .
P number of times a term appears in

@ User opinion of computer system response the context of another term

time
@ The context is defined as a window of

@ User interface management system
k words around the terms

@ System engineering for improved response
time @ Let us build a co-occurrence matrix

for this toy corpus with k = 2

@ This is also known as a word X

human| machine| system| for| ... user
human 0 1 0 1 0 o
i 1 o o 1 o context matrix
t. 0 0 0 1 2
N e 1 H 1 0 . @ You could choose the set of words
: ' ‘ and contexts to be same or different
user 0 0 2 o] ] o e Each row (column) of the co-

occurrence matrix gives a vectorial
representation of the corresponding
word (context)

Co-occurence Matrix
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human| machine| system| for user
human 0 1 0 1 0
machine 1 0 0 1 0
system 0 0 0 1 2
for 1 1 1 0 0
user 0 0 2 0 0

sh M. Khapra

Some (fixable) problems

e Stop words (a, the, for, etc.) are very

frequent — these counts will be very
high
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Some (fixable) problems

e Stop words (a, the, for, etc.) are very
frequent — these counts will be very

human| machine| system| for| ... user h]gh
human 0 1 0 x 0
machine 1 0 0 x 0 o .
votom 0 0 0 x 9 e Solution 1: Ignore very frequent
for x x x x x WOI"dS
A : : : N A e Solution 2: Use a threshold t (say, t
user 0 0 2 X 0

= 100)
Xi; = min(count(w;, ¢;),t),

where w is word and c¢ is context.
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Some (fixable) problems

@ Solution 3: Instead of count(w, c) use
PMI(w,c)
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Some (fixable) problems

@ Solution 3: Instead of count(w, c) use
PMI(w,c)

. e) = log PLElW)
PMI(w, ) =log =7 5

count(w, c) * N

count(c) x count(w)

N is the total number of words
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human| machine| system| for user
human 0 2.944 0 2.25 0
machine| 2.944 0 0 2.25 0
system 0 0 0 1.15 1.84
for 2.25 2.25 1.15 0 0
user 0 0 1.84 0 0
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Some (fixable) problems

@ Solution 3: Instead of count(w, c) use

PMI(w,c)

PMI(w,c) =

p(clw)
log p(c)

count(w, c) * N
count(c) x count(w)

N is the total number of words

@ If count(w,c) =0, PMI(w,c) = —oc0
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Some (fixable) problems

@ Solution 3: Instead of count(w, c) use
PMI(w,c)

p(clw)
p(c)
count(w, c) * N

PMI(w,c) = log

count(c) x count(w)
N is the total number of words
@ If count(w,c) =0, PMI(w,c) = —oc0
Instead use,

PMIy(w,c) = PMI(w,c) if count(w,c) >0

=0 otherwise
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Some (fixable) problems

@ Solution 3: Instead of count(w, c) use
PMI(w,c)

p(clw)
p(c)
count(w, c) * N

PMI(w,c) = log

count(c) x count(w)

N is the total number of words
@ If count(w,c) =0, PMI(w,c) = —oc0

Instead use,

PMIy(w,c) = PMI(w,c) if count(w,c) >0

=0 otherwise
or

PPMI(w,c) = PMI(w,c) if PMI(w,c)>0

=0 otherwise
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Some (severe) problems

e Very high dimensional (|V])

human| machine| system| for user
human 0 2.944 0 2.25| ... 0
machine| 2.944 0 0 2.25| ... 0
system 0 0 0 1.15 | ... 1.84
for 2.25 2.25 1.15 0 0
user 0 0 1.84 0 0
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Some (severe) problems
e Very high dimensional (|V])
e Very sparse

e Grows with the size of the vocabulary
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human| machine| system| for user
human 0 2.944 0 2.25 0
machine| 2.944 0 0 2.25 0
system 0 0 0 1.15 1.84
for 2.25 2.25 1.15 0 0
user 0 0 1.84 0 0

sh M. Khapra

Some (severe) problems
e Very high dimensional (|V])
e Very sparse
e Grows with the size of the vocabulary

e Solution: Use dimensionality reduc-
tion (SVD)
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