Module 10.2: Distributed Representations of words

• You shall know a word by the company it keeps - Firth, J. R. 1957:11

A bank is a financial institution that accepts deposits from the public and creates credit.

- You shall know a word by the company it keeps Firth, J. R. 1957:11
- Distributional similarity based representations

A bank is a **financial** institution that accepts **deposits** from the public and creates **credit**.

A bank is a **financial** institution that accepts **deposits** from the public and creates **credit**.

- You shall know a word by the company it keeps Firth, J. R. 1957:11
- Distributional similarity based representations
- This leads us to the idea of cooccurrence matrix

A bank is a financial institution that accepts deposits from the public and creates credit.

The idea is to use the accompanying words (financial, deposits, credit) to represent bank

- You shall know a word by the company it keeps Firth, J. R. 1957:11
- Distributional similarity based representations
- This leads us to the idea of cooccurrence matrix

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

• A co-occurrence matrix is a **terms** × **terms** matrix which captures the number of times a term appears in the context of another term

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

- A co-occurrence matrix is a **terms** × **terms** matrix which captures the number of times a term appears in the context of another term
- The context is defined as a window of k words around the terms

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

- A co-occurrence matrix is a **terms** × **terms** matrix which captures the number of times a term appears in the context of another term
- The context is defined as a window of k words around the terms
- Let us build a co-occurrence matrix for this toy corpus with k=2

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

	human	machine	system	for	 user
human	0	1	0	1	 0
machine	1	0	0	1	 0
system for	0	0	0	1	 2
for	1	1	1	0	 0
user	0	0	2	0	 0

Co-occurence Matrix

- A co-occurrence matrix is a **terms** × **terms** matrix which captures the number of times a term appears in the context of another term
- The context is defined as a window of k words around the terms
- Let us build a co-occurrence matrix for this toy corpus with k=2
- This is also known as a **word** × **context** matrix

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

	human	machine	system	for	 user
human	0	1	0	1	 0
machine	1	0	0	1	 0
system for	0	0	0	1	 2
for	1	1	1	0	 0
					.
user	0	0	2	0	 0

Co-occurence Matrix

- A co-occurrence matrix is a **terms** × **terms** matrix which captures the number of times a term appears in the context of another term
- The context is defined as a window of k words around the terms
- Let us build a co-occurrence matrix for this toy corpus with k=2
- This is also known as a word × context matrix
- You could choose the set of words and contexts to be same or different

- Human machine interface for computer applications
- User opinion of computer system response time
- User interface management system
- System engineering for improved response time

	human	machine	system	for	 user
human	0	1	0	1	 0
machine	1	0	0	1	 0
system for	0	0	0	1	 2
for	1	1	1	0	 0
					.
user	0	0	2	0	 0

Co-occurrence Matrix

- A co-occurrence matrix is a **terms** × terms matrix which captures the number of times a term appears in the context of another term
- The context is defined as a window of k words around the terms
- Let us build a co-occurrence matrix for this toy corpus with k=2
- This is also known as a word × context matrix
- You could choose the set of words and **contexts** to be same or different
- Each row (column) of the cooccurrence matrix gives a vectorial representation of the corresponding word (context)

	human	machine	system	for	 user
human	0	1	0	1	 0
machine	1	0	0	1	 0
system for	0	0	0	1	 2
for	1	1	1	0	 0
			.		
			.		
user	0	0	2	0	 0

• Stop words (a, the, for, etc.) are very frequent → these counts will be very high

	human	machine	system	 user
human	0	1	0	 0
machine	1	0	0	 0
system	0	0	0	 2
user	0	0	2	 0

- Stop words (a, the, for, etc.) are very frequent → these counts will be very high
- Solution 1: Ignore very frequent words

	human	machine	system	for	 user
human	0	1	0	x	 0
machine	1	0	0	x	 0
system for	0	0	0	x	 2
for	x	x	x	x	 x
			.		
			.		
			.		
user	0	0	2	x	 0

- Stop words (a, the, for, etc.) are very frequent → these counts will be very high
- Solution 1: Ignore very frequent words
- Solution 2: Use a threshold t (say, t = 100)

$$X_{ij} = min(count(w_i, c_j), t),$$

where w is word and c is context.

• Solution 3: Instead of count(w, c) use PMI(w, c)

• Solution 3: Instead of count(w, c) use PMI(w, c)

$$PMI(w,c) = \log \frac{p(c|w)}{p(c)}$$
$$= \log \frac{count(w,c) * N}{count(c) * count(w)}$$

N is the total number of words

	human	machine	system	for	 user
human	0	2.944	0	2.25	 0
machine	2.944	0	0	2.25	 0
system	0	0	0	1.15	 1.84
for	2.25	2.25	1.15	0	 0
user	0	0	1.84	0	 0

• Solution 3: Instead of count(w, c) use PMI(w, c)

$$PMI(w,c) = \log \frac{p(c|w)}{p(c)}$$
$$= \log \frac{count(w,c) * N}{count(c) * count(w)}$$

N is the total number of words

	human	machine	system	for	 user
human	0	2.944	0	2.25	 0
machine	2.944	0	0	2.25	 0
system	0	0	0	1.15	 1.84
for	2.25	2.25	1.15	O	 0
user	0	0	1.84	0	 0

• Solution 3: Instead of count(w, c) use PMI(w, c)

$$PMI(w,c) = \log \frac{p(c|w)}{p(c)}$$
$$= \log \frac{count(w,c) * N}{count(c) * count(w)}$$

N is the total number of words

• If
$$count(w, c) = 0$$
, $PMI(w, c) = -\infty$

	human	machine	system	for	 user
human	0	2.944	0	2.25	 0
machine	2.944	0	0	2.25	 0
system	0	0	0	1.15	 1.84
for	2.25	2.25	1.15	O	 0
user	0	0	1.84	0	 0

• Solution 3: Instead of count(w, c) use PMI(w, c)

$$PMI(w,c) = \log \frac{p(c|w)}{p(c)}$$
$$= \log \frac{count(w,c) * N}{count(c) * count(w)}$$

N is the total number of words

• If count(w,c) = 0, $PMI(w,c) = -\infty$

$$PMI_0(w,c) = PMI(w,c)$$
 if $count(w,c) > 0$
= 0 otherwise

	human	machine	system	for	 user
human	0	2.944	0	2.25	 0
machine	2.944	0	0	2.25	 0
system	0	0	0	1.15	 1.84
for	2.25	2.25	1.15	0	 0
			.		
user	0	0	1.84	0	 0

• Solution 3: Instead of count(w, c) use PMI(w, c)

$$PMI(w,c) = \log \frac{p(c|w)}{p(c)}$$
$$= \log \frac{count(w,c) * N}{count(c) * count(w)}$$

N is the total number of words

• If
$$count(w, c) = 0$$
, $PMI(w, c) = -\infty$

Instead use,

$$PMI_0(w,c) = PMI(w,c)$$
 if $count(w,c) > 0$
= 0 otherwise

or

$$\begin{split} PPMI(w,c) &= PMI(w,c) \quad if \ PMI(w,c) > 0 \\ &= 0 \qquad otherwise \end{split}$$

• Very high dimensional (|V|)

	human	machine	system	for	 user
human	0	2.944	0	2.25	 0
machine	2.944	0	0	2.25	 0
system	0	0	0	1.15	 1.84
for	2.25	2.25	1.15	0	 0
user	0	0	1.84	0	 0

	human	machine	system	for	 user
human	0	2.944	0	2.25	 0
machine	2.944	0	0	2.25	 0
system	0	0	0	1.15	 1.84
for	2.25	2.25	1.15	O	 0
user	0	0	1.84	0	 0

- Very high dimensional (|V|)
- Very sparse

	human	machine	system	for	 user
human	0	2.944	0	2.25	 0
machine	2.944	0	0	2.25	 0
system	0	0	0	1.15	 1.84
for	2.25	2.25	1.15	0	 0
			.		
			.		
			.		
user	0	0	1.84	0	 0

- Very high dimensional (|V|)
- Very sparse
- Grows with the size of the vocabulary

	human	machine	system	for	 user
human	0	2.944	0	2.25	 0
machine	2.944	0	0	2.25	 0
system	0	0	0	1.15	 1.84
for	2.25	2.25	1.15	0	 0
user	0	0	1.84	0	 0

- Very high dimensional (|V|)
- Very sparse
- Grows with the size of the vocabulary
- Solution: Use dimensionality reduction (SVD)