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Module 10.3: SVD for learning word representations
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 X


m×n

=


↑ · · · ↑

u1 · · · uk

↓ · · · ↓


m×k

σ1

. . .

σk


k×k

← vT1 →
...

← vTk →


k×n

Singular Value Decomposition
gives a rank k approximation of
the original matrix

X = XPPMIm×n = Um×kΣk×kV
T
k×n

XPPMI (simplifying notation to
X) is the co-occurrence matrix
with PPMI values

SVD gives the best rank-k ap-
proximation of the original data
(X)

Discovers latent semantics in the
corpus (let us examine this with
the help of an example)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



2/9

 X


m×n

=


↑ · · · ↑

u1 · · · uk

↓ · · · ↓


m×k

σ1

. . .

σk


k×k

← vT1 →
...

← vTk →


k×n

Singular Value Decomposition
gives a rank k approximation of
the original matrix

X = XPPMIm×n = Um×kΣk×kV
T
k×n

XPPMI (simplifying notation to
X) is the co-occurrence matrix
with PPMI values

SVD gives the best rank-k ap-
proximation of the original data
(X)

Discovers latent semantics in the
corpus (let us examine this with
the help of an example)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



2/9

 X


m×n

=


↑ · · · ↑

u1 · · · uk

↓ · · · ↓


m×k

σ1

. . .

σk


k×k

← vT1 →
...

← vTk →


k×n

Singular Value Decomposition
gives a rank k approximation of
the original matrix

X = XPPMIm×n = Um×kΣk×kV
T
k×n

XPPMI (simplifying notation to
X) is the co-occurrence matrix
with PPMI values

SVD gives the best rank-k ap-
proximation of the original data
(X)

Discovers latent semantics in the
corpus (let us examine this with
the help of an example)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



3/9

 X


m×n

=


↑ · · · ↑

u1 · · · uk

↓ · · · ↓


m×k

σ1

. . .

σk


k×k

← vT1 →
...

← vTk →


k×n

= σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

Notice that the product can be
written as a sum of k rank-1
matrices

Each σiuiv
T
i ∈ Rm×n because it

is a product of a m × 1 vector
with a 1× n vector

If we truncate the sum at σ1u1v
T
1

then we get the best rank-1 ap-
proximation of X

(By SVD the-
orem! But what does this mean?
We will see on the next slide)

If we truncate the sum at
σ1u1v

T
1 +σ2u2v

T
2 then we get the

best rank-2 approximation of X
and so on
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= σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

What do we mean by approxim-
ation here?

Notice that X has m× n entries

When we use he rank-1 approx-
imation we are using only n +
m+ 1 entries to reconstruct [u ∈
Rm, v ∈ Rn, σ ∈ R1]

But SVD theorem tells us that
u1,v1 and σ1 store the most in-
formation in X (akin to the prin-
cipal components in X)

Each subsequent term (σ2u2v
T
2 ,

σ3u3v
T
3 , . . . ) stores less and less

important information
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verylight︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 0 1 1 0 1 1

light︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 1 0 1 0 1 1

dark︷ ︸︸ ︷ green︷ ︸︸ ︷
0 1 0 0 1 0 1 1

verydark︷ ︸︸ ︷ green︷ ︸︸ ︷
1 0 0 0 1 0 1 1

As an analogy consider the case when
we are using 8 bits to represent colors

The representation of very light, light,
dark and very dark green would look
different

But now what if we were asked to com-
press this into 4 bits? (akin to com-
pressing m ×m values into m + m + 1
values on the previous slide)

We will retain the most important 4
bits and now the previously (slightly)
latent similarity between the colors now
becomes very obvious

Something similar is guaranteed by
SVD (retain the most important in-
formation and discover the latent sim-
ilarities between words)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



5/9

verylight︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 0 1 1 0 1 1

light︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 1 0 1 0 1 1

dark︷ ︸︸ ︷ green︷ ︸︸ ︷
0 1 0 0 1 0 1 1

verydark︷ ︸︸ ︷ green︷ ︸︸ ︷
1 0 0 0 1 0 1 1

As an analogy consider the case when
we are using 8 bits to represent colors

The representation of very light, light,
dark and very dark green would look
different

But now what if we were asked to com-
press this into 4 bits? (akin to com-
pressing m ×m values into m + m + 1
values on the previous slide)

We will retain the most important 4
bits and now the previously (slightly)
latent similarity between the colors now
becomes very obvious

Something similar is guaranteed by
SVD (retain the most important in-
formation and discover the latent sim-
ilarities between words)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



5/9

verylight︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 0 1 1 0 1 1

light︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 1 0 1 0 1 1

dark︷ ︸︸ ︷ green︷ ︸︸ ︷
0 1 0 0 1 0 1 1

verydark︷ ︸︸ ︷ green︷ ︸︸ ︷
1 0 0 0 1 0 1 1

As an analogy consider the case when
we are using 8 bits to represent colors

The representation of very light, light,
dark and very dark green would look
different

But now what if we were asked to com-
press this into 4 bits? (akin to com-
pressing m ×m values into m + m + 1
values on the previous slide)

We will retain the most important 4
bits and now the previously (slightly)
latent similarity between the colors now
becomes very obvious

Something similar is guaranteed by
SVD (retain the most important in-
formation and discover the latent sim-
ilarities between words)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



5/9

verylight︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 0 1 1 0 1 1

light︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 1 0 1 0 1 1

dark︷ ︸︸ ︷ green︷ ︸︸ ︷
0 1 0 0 1 0 1 1

verydark︷ ︸︸ ︷ green︷ ︸︸ ︷
1 0 0 0 1 0 1 1

As an analogy consider the case when
we are using 8 bits to represent colors

The representation of very light, light,
dark and very dark green would look
different

But now what if we were asked to com-
press this into 4 bits? (akin to com-
pressing m ×m values into m + m + 1
values on the previous slide)

We will retain the most important 4
bits and now the previously (slightly)
latent similarity between the colors now
becomes very obvious

Something similar is guaranteed by
SVD (retain the most important in-
formation and discover the latent sim-
ilarities between words)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



5/9

verylight︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 0 1 1 0 1 1

light︷ ︸︸ ︷ green︷ ︸︸ ︷
0 0 1 0 1 0 1 1

dark︷ ︸︸ ︷ green︷ ︸︸ ︷
0 1 0 0 1 0 1 1

verydark︷ ︸︸ ︷ green︷ ︸︸ ︷
1 0 0 0 1 0 1 1

As an analogy consider the case when
we are using 8 bits to represent colors

The representation of very light, light,
dark and very dark green would look
different

But now what if we were asked to com-
press this into 4 bits? (akin to com-
pressing m ×m values into m + m + 1
values on the previous slide)

We will retain the most important 4
bits and now the previously (slightly)
latent similarity between the colors now
becomes very obvious

Something similar is guaranteed by
SVD (retain the most important in-
formation and discover the latent sim-
ilarities between words)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



6/9

human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

Co-occurrence Matrix (X)

human machine system for ... user
human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

Low rank X → Low rank X̂

Notice that after low rank reconstruction with SVD, the latent co-occurrence
between {system,machine} and {human, user} has become visible
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X =

human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

cosine sim(human, user) = 0.21

Recall that earlier each row of the original
matrix X served as the representation of a
word

Then XXT is a matrix whose ij-th entry is
the dot product between the representation
of word i (X[i :]) and word j (X[j :])

X[i :]

X[j :]

 1 2 3
2 1 0
1 3 5


︸ ︷︷ ︸

X

 1 2 1
2 1 3
3 0 5


︸ ︷︷ ︸

XT

=

. . 22
. . .
. . .


︸ ︷︷ ︸

XXT

The ij-th entry of XXT thus (roughly)
captures the cosine similarity between
wordi, wordj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



7/9

X =

human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

XXT =

human machine system for ... user
human 32.5 23.9 7.78 20.25 ... 7.01
machine 23.9 32.5 7.78 20.25 ... 7.01
system 7.78 7.78 0 17.65 ... 21.84

for 20.25 20.25 17.65 36.3 ... 11.8
. . . . . . .
. . . . . . .
. . . . . . .

user 7.01 7.01 21.84 11.8 ... 28.3

cosine sim(human, user) = 0.21

Recall that earlier each row of the original
matrix X served as the representation of a
word

Then XXT is a matrix whose ij-th entry is
the dot product between the representation
of word i (X[i :]) and word j (X[j :])

X[i :]

X[j :]

 1 2 3
2 1 0
1 3 5


︸ ︷︷ ︸

X

 1 2 1
2 1 3
3 0 5


︸ ︷︷ ︸

XT

=

. . 22
. . .
. . .


︸ ︷︷ ︸

XXT

The ij-th entry of XXT thus (roughly)
captures the cosine similarity between
wordi, wordj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



7/9

X =

human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

XXT =

human machine system for ... user
human 32.5 23.9 7.78 20.25 ... 7.01
machine 23.9 32.5 7.78 20.25 ... 7.01
system 7.78 7.78 0 17.65 ... 21.84

for 20.25 20.25 17.65 36.3 ... 11.8
. . . . . . .
. . . . . . .
. . . . . . .

user 7.01 7.01 21.84 11.8 ... 28.3

cosine sim(human, user) = 0.21

Recall that earlier each row of the original
matrix X served as the representation of a
word

Then XXT is a matrix whose ij-th entry is
the dot product between the representation
of word i (X[i :]) and word j (X[j :])

X[i :]

X[j :]

 1 2 3
2 1 0
1 3 5


︸ ︷︷ ︸

X

 1 2 1
2 1 3
3 0 5


︸ ︷︷ ︸

XT

=

. . 22
. . .
. . .


︸ ︷︷ ︸

XXT

The ij-th entry of XXT thus (roughly)
captures the cosine similarity between
wordi, wordj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



7/9

X =

human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

XXT =

human machine system for ... user
human 32.5 23.9 7.78 20.25 ... 7.01
machine 23.9 32.5 7.78 20.25 ... 7.01
system 7.78 7.78 0 17.65 ... 21.84

for 20.25 20.25 17.65 36.3 ... 11.8
. . . . . . .
. . . . . . .
. . . . . . .

user 7.01 7.01 21.84 11.8 ... 28.3

cosine sim(human, user) = 0.21

Recall that earlier each row of the original
matrix X served as the representation of a
word

Then XXT is a matrix whose ij-th entry is
the dot product between the representation
of word i (X[i :]) and word j (X[j :])

X[i :]

X[j :]

 1 2 3
2 1 0
1 3 5


︸ ︷︷ ︸

X

 1 2 1
2 1 3
3 0 5


︸ ︷︷ ︸

XT

=

. . 22
. . .
. . .


︸ ︷︷ ︸

XXT

The ij-th entry of XXT thus (roughly)
captures the cosine similarity between
wordi, wordj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



7/9

X =

human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

XXT =

human machine system for ... user
human 32.5 23.9 7.78 20.25 ... 7.01
machine 23.9 32.5 7.78 20.25 ... 7.01
system 7.78 7.78 0 17.65 ... 21.84

for 20.25 20.25 17.65 36.3 ... 11.8
. . . . . . .
. . . . . . .
. . . . . . .

user 7.01 7.01 21.84 11.8 ... 28.3

cosine sim(human, user) = 0.21

Recall that earlier each row of the original
matrix X served as the representation of a
word

Then XXT is a matrix whose ij-th entry is
the dot product between the representation
of word i (X[i :]) and word j (X[j :])

X[i :]

X[j :]

 1 2 3
2 1 0
1 3 5


︸ ︷︷ ︸

X

 1 2 1
2 1 3
3 0 5


︸ ︷︷ ︸

XT

=

. . 22
. . .
. . .


︸ ︷︷ ︸

XXT

The ij-th entry of XXT thus (roughly)
captures the cosine similarity between
wordi, wordj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



7/9

X =

human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

XXT =

human machine system for ... user
human 32.5 23.9 7.78 20.25 ... 7.01
machine 23.9 32.5 7.78 20.25 ... 7.01
system 7.78 7.78 0 17.65 ... 21.84

for 20.25 20.25 17.65 36.3 ... 11.8
. . . . . . .
. . . . . . .
. . . . . . .

user 7.01 7.01 21.84 11.8 ... 28.3

cosine sim(human, user) = 0.21

Recall that earlier each row of the original
matrix X served as the representation of a
word

Then XXT is a matrix whose ij-th entry is
the dot product between the representation
of word i (X[i :]) and word j (X[j :])

X[i :]

X[j :]

 1 2 3
2 1 0
1 3 5


︸ ︷︷ ︸

X

 1 2 1
2 1 3
3 0 5


︸ ︷︷ ︸

XT

=

. . 22
. . .
. . .


︸ ︷︷ ︸

XXT

The ij-th entry of XXT thus (roughly)
captures the cosine similarity between
wordi, wordj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



7/9

X =

human machine system for ... user
human 0 2.944 0 2.25 ... 0
machine 2.944 0 0 2.25 ... 0
system 0 0 0 1.15 ... 1.84

for 2.25 2.25 1.15 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

user 0 0 1.84 0 ... 0

XXT =

human machine system for ... user
human 32.5 23.9 7.78 20.25 ... 7.01
machine 23.9 32.5 7.78 20.25 ... 7.01
system 7.78 7.78 0 17.65 ... 21.84

for 20.25 20.25 17.65 36.3 ... 11.8
. . . . . . .
. . . . . . .
. . . . . . .

user 7.01 7.01 21.84 11.8 ... 28.3

cosine sim(human, user) = 0.21

Recall that earlier each row of the original
matrix X served as the representation of a
word

Then XXT is a matrix whose ij-th entry is
the dot product between the representation
of word i (X[i :]) and word j (X[j :])

X[i :]

X[j :]

 1 2 3
2 1 0
1 3 5


︸ ︷︷ ︸

X

 1 2 1
2 1 3
3 0 5


︸ ︷︷ ︸

XT

=

. . 22
. . .
. . .


︸ ︷︷ ︸

XXT

The ij-th entry of XXT thus (roughly)
captures the cosine similarity between
wordi, wordj

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



8/9

X̂ =

human machine system for ... user
human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

X̂X̂T =

human machine system for ... user
human 25.4 25.4 7.6 21.9 ... 6.84
machine 25.4 25.4 7.6 21.9 ... 6.84
system 7.6 7.6 24.8 18.03 ... 20.6

for 21.9 21.9 0.96 24.6 ... 15.32
. . . . . . .
. . . . . . .
. . . . . . .

user 6.84 6.84 20.6 15.32 ... 17.11

cosine sim(human, user) = 0.33

Once we do an SVD what is a
good choice for the representation of
wordi?

Obviously, taking the i-th row of the
reconstructed matrix does not make
sense because it is still high dimen-
sional

But we saw that the reconstructed
matrix X̂ = UΣV T discovers latent
semantics and its word representa-
tions are more meaningful

Wishlist: We would want represent-
ations of words (i, j) to be of smal-
ler dimensions but still have the same
similarity (dot product) as the corres-
ponding rows of X̂
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similarity = 0.33

Notice that the dot product between the
rows of the the matrix Wword = UΣ is the
same as the dot product between the rows
of X̂

X̂X̂T = (UΣV T )(UΣV T )T

= (UΣV T )(V ΣUT )

= UΣΣTUT (∵ V TV = I)

= UΣ(UΣ)T = WwordW
T
word

Conventionally,

Wword = UΣ ∈ Rm×k

is taken as the representation of the m words
in the vocabulary and

Wcontext = V

is taken as the representation of the context
words

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



9/9

X̂ =

human machine system for ... user
human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

X̂X̂T =

human machine system for ... user
human 25.4 25.4 7.6 21.9 ... 6.84
machine 25.4 25.4 7.6 21.9 ... 6.84
system 7.6 7.6 24.8 18.03 ... 20.6

for 21.9 21.9 0.96 24.6 ... 15.32
. . . . . . .
. . . . . . .
. . . . . . .

user 6.84 6.84 20.6 15.32 ... 17.11

similarity = 0.33

Notice that the dot product between the
rows of the the matrix Wword = UΣ is the
same as the dot product between the rows
of X̂

X̂X̂T = (UΣV T )(UΣV T )T

= (UΣV T )(V ΣUT )

= UΣΣTUT (∵ V TV = I)

= UΣ(UΣ)T = WwordW
T
word

Conventionally,

Wword = UΣ ∈ Rm×k

is taken as the representation of the m words
in the vocabulary and

Wcontext = V

is taken as the representation of the context
words

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



9/9

X̂ =

human machine system for ... user
human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

X̂X̂T =

human machine system for ... user
human 25.4 25.4 7.6 21.9 ... 6.84
machine 25.4 25.4 7.6 21.9 ... 6.84
system 7.6 7.6 24.8 18.03 ... 20.6

for 21.9 21.9 0.96 24.6 ... 15.32
. . . . . . .
. . . . . . .
. . . . . . .

user 6.84 6.84 20.6 15.32 ... 17.11

similarity = 0.33

Notice that the dot product between the
rows of the the matrix Wword = UΣ is the
same as the dot product between the rows
of X̂

X̂X̂T = (UΣV T )(UΣV T )T

= (UΣV T )(V ΣUT )

= UΣΣTUT (∵ V TV = I)

= UΣ(UΣ)T = WwordW
T
word

Conventionally,

Wword = UΣ ∈ Rm×k

is taken as the representation of the m words
in the vocabulary and

Wcontext = V

is taken as the representation of the context
words

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



9/9

X̂ =

human machine system for ... user
human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

X̂X̂T =

human machine system for ... user
human 25.4 25.4 7.6 21.9 ... 6.84
machine 25.4 25.4 7.6 21.9 ... 6.84
system 7.6 7.6 24.8 18.03 ... 20.6

for 21.9 21.9 0.96 24.6 ... 15.32
. . . . . . .
. . . . . . .
. . . . . . .

user 6.84 6.84 20.6 15.32 ... 17.11

similarity = 0.33

Notice that the dot product between the
rows of the the matrix Wword = UΣ is the
same as the dot product between the rows
of X̂

X̂X̂T = (UΣV T )(UΣV T )T

= (UΣV T )(V ΣUT )

= UΣΣTUT (∵ V TV = I)

= UΣ(UΣ)T = WwordW
T
word

Conventionally,

Wword = UΣ ∈ Rm×k

is taken as the representation of the m words
in the vocabulary and

Wcontext = V

is taken as the representation of the context
words

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10



9/9

X̂ =

human machine system for ... user
human 2.01 2.01 0.23 2.14 ... 0.43
machine 2.01 2.01 0.23 2.14 ... 0.43
system 0.23 0.23 1.17 0.96 ... 1.29

for 2.14 2.14 0.96 1.87 ... -0.13
. . . . . . .
. . . . . . .
. . . . . . .

user 0.43 0.43 1.29 -0.13 ... 1.71

X̂X̂T =

human machine system for ... user
human 25.4 25.4 7.6 21.9 ... 6.84
machine 25.4 25.4 7.6 21.9 ... 6.84
system 7.6 7.6 24.8 18.03 ... 20.6

for 21.9 21.9 0.96 24.6 ... 15.32
. . . . . . .
. . . . . . .
. . . . . . .

user 6.84 6.84 20.6 15.32 ... 17.11

similarity = 0.33

Notice that the dot product between the
rows of the the matrix Wword = UΣ is the
same as the dot product between the rows
of X̂

X̂X̂T = (UΣV T )(UΣV T )T

= (UΣV T )(V ΣUT )

= UΣΣTUT (∵ V TV = I)

= UΣ(UΣ)T = WwordW
T
word

Conventionally,

Wword = UΣ ∈ Rm×k

is taken as the representation of the m words
in the vocabulary and

Wcontext = V

is taken as the representation of the context
words

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 10


