Module 10.4: Continuous bag of words model

• The methods that we have seen so far are called **count based models** because they use the co-occurrence counts of words

- The methods that we have seen so far are called **count based models** because they use the co-occurrence counts of words
- We will now see methods which directly **learn** word representations (these are called **(direct) prediction based models**)

• Continuous bag of words model

- Continuous bag of words model
- Skip gram model with negative sampling (the famous word2vec)

- Continuous bag of words model
- Skip gram model with negative sampling (the famous word2vec)
- GloVe word embeddings

- Continuous bag of words model
- Skip gram model with negative sampling (the famous word2vec)
- GloVe word embeddings
- Evaluating word embeddings

- Continuous bag of words model
- Skip gram model with negative sampling (the famous word2vec)
- GloVe word embeddings
- Evaluating word embeddings
- Good old SVD does just fine!!

• Consider this Task: Predict *n*-th word given previous *n*-1 words

- Consider this Task: Predict *n*-th word given previous *n*-1 words
- Example: he sat on a chair

Sometime in the 21st century, Joseph Cooper, a widowed former engineer and former NASA pilot, runs a farm with his father-in-law Donald, son Tom, and daughter Murphy, It is post-truth society (Cooper is reprimanded for tellingMurphy that the Apollo missions did indeed happen) and a series of crop blights threatens humanity's survival. Murphy believes her bedroom is haunted by a poltergeist. When a pattern is created out of dust on the floor, Cooper realizes that gravity is behind its formation. not a "qhost". He interprets the pattern as set of geographic coordinates formed into binary code. Cooper and Murphy follow the coordinates to a secret NASA facility, where they are met by Cooper's former professor. Dr. Brand.

Some sample 4 word windows from a corpus

- Consider this Task: Predict *n*-th word given previous *n*-1 words
- Example: he sat on a chair
- Training data: All *n*-word windows in your corpus

Sometime in the 21st century, Joseph Cooper, a widowed former engineer and former NASA pilot, runs a farm with his father-in-law Donald, son Tom, and daughter Murphy, It is post-truth society (Cooper is reprimanded for tellingMurphy that the Apollo missions did indeed happen) and a series of crop blights threatens humanity's survival. Murphy believes her bedroom is haunted by a poltergeist. When a pattern is created out of dust on the floor, Cooper realizes that gravity is behind its formation. not a "qhost". He interprets the pattern as set of geographic coordinates formed into binary code. Cooper and Murphy follow the coordinates to a secret NASA facility, where they are met by Cooper's former professor. Dr. Brand.

Some sample 4 word windows from a corpus

- Consider this Task: Predict *n*-th word given previous *n*-1 words
- Example: he sat on a chair
- Training data: All *n*-word windows in your corpus
- Training data for this task is easily available (take all *n* word windows from the whole of wikipedia)

Sometime in the 21st century, Joseph Cooper, a widowed former engineer and former NASA pilot, runs a farm with his father-in-law Donald, son Tom, and daughter Murphy, It is post-truth society (Cooper is reprimanded for tellingMurphy that the Apollo missions did indeed happen) and a series of crop blights threatens humanity's survival. Murphy believes her bedroom is haunted by a poltergeist. When a pattern is created out of dust on the floor, Cooper realizes that gravity is behind its formation. not a "qhost". He interprets the pattern as a set of geographic coordinates formed into binary code. Cooper and Murphy follow the coordinates to a secret NASA facility, where they are met by Cooper's former professor. Dr. Brand.

Some sample 4 word windows from a corpus

- Consider this Task: Predict *n*-th word given previous *n*-1 words
- Example: he sat on a chair
- Training data: All *n*-word windows in your corpus
- Training data for this task is easily available (take all *n* word windows from the whole of wikipedia)
- For ease of illustration, we will first focus on the case when n = 2 (*i.e.*, predict second word based on first word)

We will now try to answer these two questions:

We will now try to answer these two questions:

• How do you model this task?

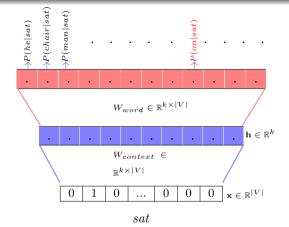
We will now try to answer these two questions:

- How do you model this task?
- What is the connection between this task and learning word representations?

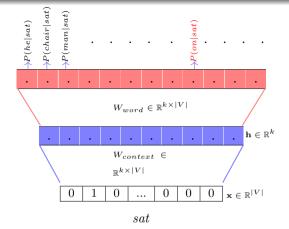
• We will model this problem using a feedforward neural network

$\rightarrow P(he sat)$	$\rightarrow P(chair sat)$	$\rightarrow P(man sat)$				$\rightarrow P(on sat)$			
		•	•	•		•	•	•	•

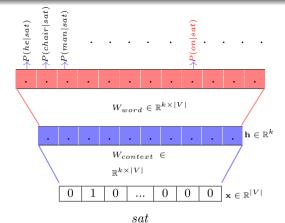
- We will model this problem using a feedforward neural network
- Input: One-hot representation of the context word



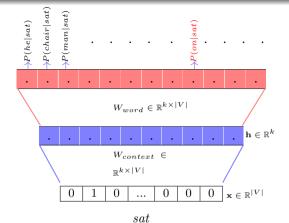
- We will model this problem using a feedforward neural network
- Input: One-hot representation of the context word
- Output: There are |V| words (classes) possible and we want to predict a probability distribution over these |V| classes (multi-class classification problem)



- We will model this problem using a feedforward neural network
- Input: One-hot representation of the context word
- Output: There are |V| words (classes) possible and we want to predict a probability distribution over these |V| classes (multi-class classification problem)
- Parameters: $\mathbf{W}_{context} \in \mathbb{R}^{k \times |V|}$ and $\mathbf{W}_{word} \in \mathbb{R}^{k \times |V|}$ (we are assuming that the set of words and context words is the same: each of size |V|)

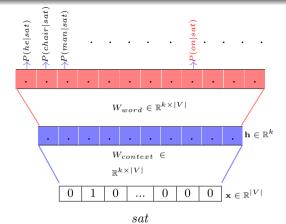


• What is the product $\mathbf{W}_{context}\mathbf{x}$ given that \mathbf{x} is a one hot vector



- What is the product $\mathbf{W}_{context}\mathbf{x}$ given that \mathbf{x} is a one hot vector
- ullet It is simply the *i*-th column of $\mathbf{W}_{context}$

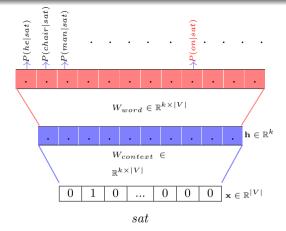
$$\begin{bmatrix} -1 & 0.5 & 2 \\ 3 & -1 & -2 \\ -2 & 1.7 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -1 \\ 1.7 \end{bmatrix}$$



- What is the product $\mathbf{W}_{context}\mathbf{x}$ given that \mathbf{x} is a one hot vector
- It is simply the *i*-th column of $\mathbf{W}_{context}$

$$\begin{bmatrix} -1 & 0.5 & 2 \\ 3 & -1 & -2 \\ -2 & 1.7 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -1 \\ 1.7 \end{bmatrix}$$

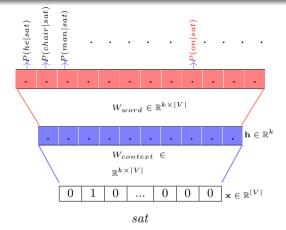
• So when the i^{th} word is present the i^{th} element in the one hot vector is ON and the i^{th} column of $\mathbf{W}_{context}$ gets selected



- What is the product $\mathbf{W}_{context}\mathbf{x}$ given that \mathbf{x} is a one hot vector
- It is simply the *i*-th column of $\mathbf{W}_{context}$

$$\begin{bmatrix} -1 & 0.5 & 2 \\ 3 & -1 & -2 \\ -2 & 1.7 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -1 \\ 1.7 \end{bmatrix}$$

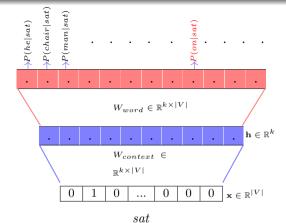
- So when the i^{th} word is present the i^{th} element in the one hot vector is ON and the i^{th} column of $\mathbf{W}_{context}$ gets selected
- In other words, there is a one-to-one correspondence between the words and the column of W_{context}



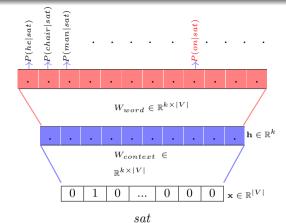
- What is the product $\mathbf{W}_{context}\mathbf{x}$ given that \mathbf{x} is a one hot vector
- ullet It is simply the *i*-th column of $\mathbf{W}_{context}$

$$\begin{bmatrix} -1 & 0.5 & 2 \\ 3 & -1 & -2 \\ -2 & 1.7 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -1 \\ 1.7 \end{bmatrix}$$

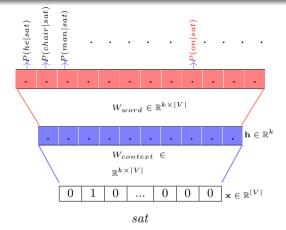
- So when the i^{th} word is present the i^{th} element in the one hot vector is ON and the i^{th} column of $\mathbf{W}_{context}$ gets selected
- In other words, there is a one-to-one correspondence between the words and the column of W_{context}
- More specifically, we can treat the *i*-th column of $\mathbf{W}_{context}$ as the representation of context *i*



• How do we obtain P(on|sat)? For this multiclass classification problem what is an appropriate output function?



• How do we obtain P(on|sat)? For this multiclass classification problem what is an appropriate output function? (softmax)



• How do we obtain P(on|sat)? For this multiclass classification problem what is an appropriate output function? (softmax)



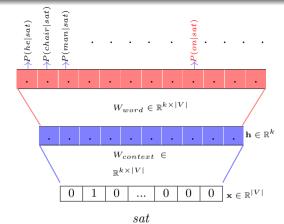
- How do we obtain P(on|sat)? For this multiclass classification problem what is an appropriate output function? (softmax)
- Therefore, P(on|sat) is proportional to the dot product between j^{th} column of $\mathbf{W}_{context}$ and i^{th} column of \mathbf{W}_{word}

$$P(on|sat) = \frac{e^{(\mathbf{W}_{word}h)[i]}}{\sum_{i} e^{(\mathbf{W}_{word}h)[j]}}$$



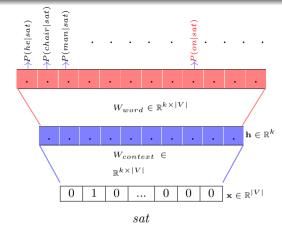
- How do we obtain P(on|sat)? For this multiclass classification problem what is an appropriate output function? (softmax)
- Therefore, P(on|sat) is proportional to the dot product between j^{th} column of $\mathbf{W}_{context}$ and i^{th} column of \mathbf{W}_{word}
- P(word = i|sat) thus depends on the i^{th} column of \mathbf{W}_{word}

$$P(on|sat) = \frac{e^{(\mathbf{W}_{word}h)[i]}}{\sum_{j} e^{(\mathbf{W}_{word}h)[j]}}$$



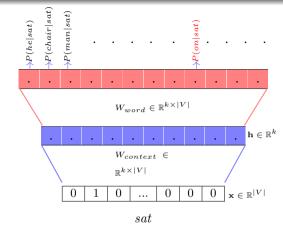
 $P(on|sat) = \frac{e^{(\mathbf{W}_{word}h)[i]}}{\sum_{j} e^{(\mathbf{W}_{word}h)[j]}}$

- How do we obtain P(on|sat)? For this multiclass classification problem what is an appropriate output function? (softmax)
- Therefore, P(on|sat) is proportional to the dot product between j^{th} column of $\mathbf{W}_{context}$ and i^{th} column of \mathbf{W}_{word}
- P(word = i|sat) thus depends on the i^{th} column of \mathbf{W}_{word}
- We thus treat the *i*-th column of \mathbf{W}_{word} as the representation of word *i*



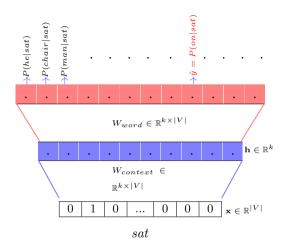
$$P(on|sat) = \frac{e^{(\mathbf{W}_{word}h)[i]}}{\sum_{j} e^{(\mathbf{W}_{word}h)[j]}}$$

- How do we obtain P(on|sat)? For this multiclass classification problem what is an appropriate output function? (softmax)
- Therefore, P(on|sat) is proportional to the dot product between j^{th} column of $\mathbf{W}_{context}$ and i^{th} column of \mathbf{W}_{word}
- P(word = i|sat) thus depends on the i^{th} column of \mathbf{W}_{word}
- We thus treat the *i*-th column of \mathbf{W}_{word} as the representation of word *i*
- Hope you see an analogy with SVD! (there we had a different way of learning $\mathbf{W}_{context}$ and \mathbf{W}_{word} but we saw that the i^{th} column of \mathbf{W}_{word} corresponded to the representation of the i^{th} word)

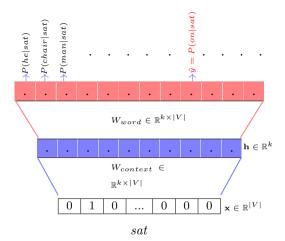


$$P(on|sat) = \frac{e^{(\mathbf{W}_{word}h)[i]}}{\sum_{j} e^{(\mathbf{W}_{word}h)[j]}}$$

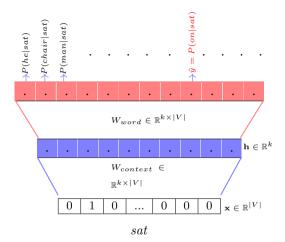
- How do we obtain P(on|sat)? For this multiclass classification problem what is an appropriate output function? (softmax)
- Therefore, P(on|sat) is proportional to the dot product between j^{th} column of $\mathbf{W}_{context}$ and i^{th} column of \mathbf{W}_{word}
- P(word = i|sat) thus depends on the i^{th} column of \mathbf{W}_{word}
- We thus treat the *i*-th column of \mathbf{W}_{word} as the representation of word *i*
- Hope you see an analogy with SVD! (there we had a different way of learning $\mathbf{W}_{context}$ and \mathbf{W}_{word} but we saw that the i^{th} column of \mathbf{W}_{word} corresponded to the representation of the i^{th} word)
- Now that we understood the interpretation of $\mathbf{W}_{context}$ and \mathbf{W}_{word} , our aim now is to learn these parameters



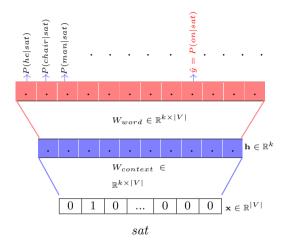
• We denote the context word (sat) by the index c and the correct output word (on) by the index w



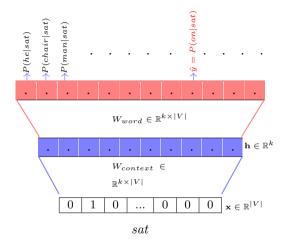
- We denote the context word (sat) by the index c and the correct output word (on) by the index w
- For this multiclass classification problem what is an appropriate output function $(\hat{y} = f(x))$?



- We denote the context word (sat) by the index c and the correct output word (on) by the index w
- For this multiclass classification problem what is an appropriate output function ($\hat{y} = f(x)$)? softmax

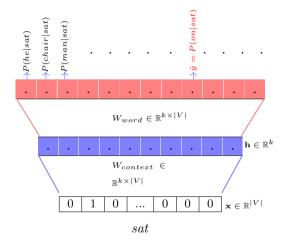


- We denote the context word (sat) by the index c and the correct output word (on) by the index w
- For this multiclass classification problem what is an appropriate output function $(\hat{y} = f(x))$? softmax
- What is an appropriate loss function?



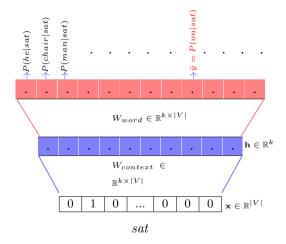
- We denote the context word (sat) by the index c and the correct output word (on) by the index w
- For this multiclass classification problem what is an appropriate output function $(\hat{y} = f(x))$? softmax
- What is an appropriate loss function? **cross entropy**

$$\mathcal{L}(\theta) = -\log \hat{y}_w = -\log P(w|c)$$



- We denote the context word (sat) by the index c and the correct output word (on) by the index w
- For this multiclass classification problem what is an appropriate output function $(\hat{y} = f(x))$? softmax
- What is an appropriate loss function? **cross entropy**

$$\mathcal{L}(\theta) = -\log \hat{y}_w = -\log P(w|c)$$
$$h = W_{context} \cdot x_c = u_c$$

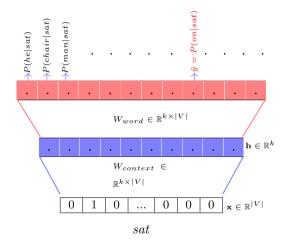


- We denote the context word (sat) by the index c and the correct output word (on) by the index w
- For this multiclass classification problem what is an appropriate output function $(\hat{y} = f(x))$? **softmax**
- What is an appropriate loss function? **cross entropy**

$$\mathcal{L}(\theta) = -\log \hat{y}_w = -\log P(w|c)$$

$$h = W_{context} \cdot x_c = u_c$$

$$\hat{y}_w = \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$



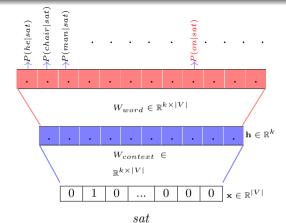
- We denote the context word (sat) by the index c and the correct output word (on) by the index w
- For this multiclass classification problem what is an appropriate output function $(\hat{y} = f(x))$? **softmax**
- What is an appropriate loss function? **cross entropy**

$$\mathcal{L}(\theta) = -\log \hat{y}_w = -\log P(w|c)$$

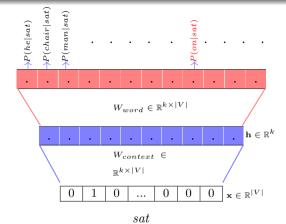
$$h = W_{context} \cdot x_c = u_c$$

$$\hat{y}_w = \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

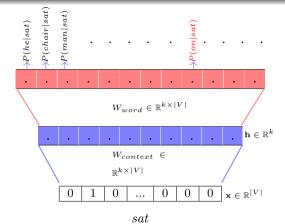
 u_c is the column of $W_{context}$ corresponding to context c and v_w is the column of W_{word} corresponding to context w



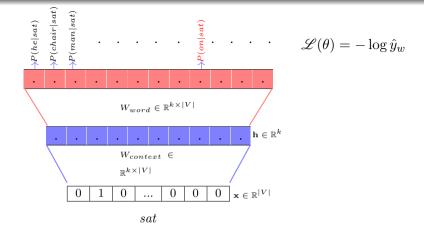
• How do we train this simple feed forward neural network?

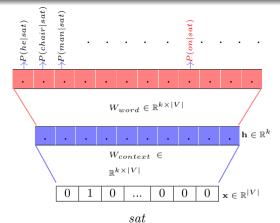


• How do we train this simple feed forward neural network? backpropagation



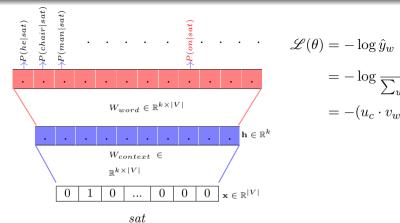
- How do we train this simple feed forward neural network? backpropagation
- Let us consider one input-output pair (c, w) and see the update rule for v_w





$$\mathcal{L}(\theta) = -\log \hat{y}_w$$

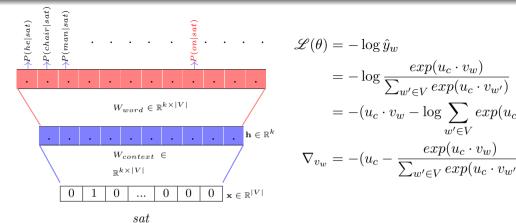
$$= -\log \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$



$$\mathcal{L}(\theta) = -\log \hat{y}_w$$

$$= -\log \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

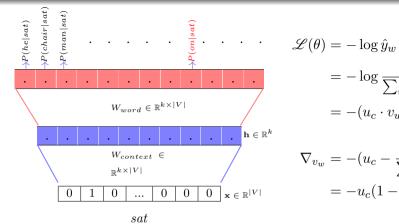
$$= -(u_c \cdot v_w - \log \sum_{w' \in V} exp(u_c \cdot v_{w'}))$$



$$\nabla_{v_w} = -\left(u_c - \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})} \cdot u_c\right)$$

 $= -(u_c \cdot v_w - \log \sum exp(u_c \cdot v_{w'}))$

$$\nabla_{v_w} = -\frac{\partial}{\partial v} \mathscr{L}(\theta)$$



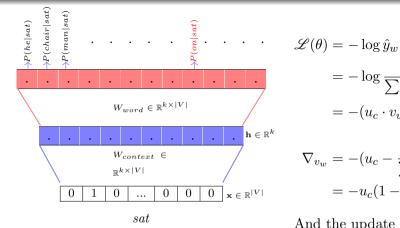
$$\mathcal{L}(\theta) = -\log \hat{y}_w$$

$$= -\log \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

$$= -(u_c \cdot v_w - \log \sum_{w' \in V} exp(u_c \cdot v_{w'}))$$

$$\nabla_{v_w} = -(u_c - \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})} \cdot u_c)$$

$$= -u_c(1 - \hat{y}_w)$$



$$\mathcal{L}(\theta) = -\log \hat{y}_w$$

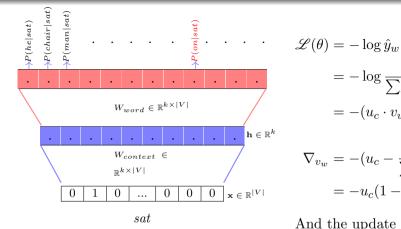
$$= -\log \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

$$= -(u_c \cdot v_w - \log \sum_{w' \in V} exp(u_c \cdot v_{w'}))$$

$$\nabla_{v_w} = -(u_c - \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})} \cdot u_c)$$

$$= -u_c(1 - \hat{y}_w)$$

And the update rule would be



$$\mathcal{L}(\theta) = -\log \hat{y}_w$$

$$= -\log \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

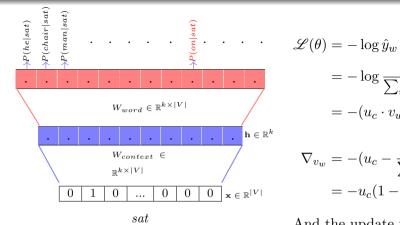
$$= -(u_c \cdot v_w - \log \sum_{w' \in V} exp(u_c \cdot v_{w'}))$$

$$\nabla_{v_w} = -(u_c - \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})} \cdot u_c)$$

$$= -u_c(1 - \hat{y}_w)$$

And the update rule would be

$$v_w = v_w - \eta \nabla_{v_w}$$



$$\mathcal{L}(\theta) = -\log \hat{y}_w$$

$$= -\log \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

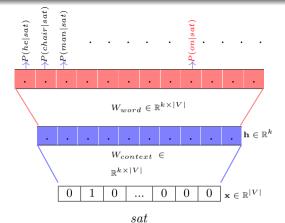
$$= -(u_c \cdot v_w - \log \sum_{w' \in V} exp(u_c \cdot v_{w'}))$$

$$\nabla_{v_w} = -(u_c - \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})} \cdot u_c)$$

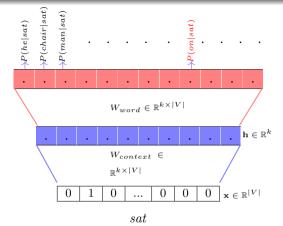
$$= -u_c(1 - \hat{y}_w)$$

And the update rule would be

$$v_w = v_w - \eta \nabla_{v_w}$$
$$= v_w + \eta u_c (1 - \hat{y}_w)$$

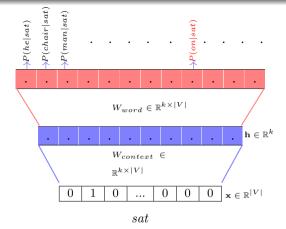


$$v_w = v_w + \eta u_c (1 - \hat{y}_w)$$



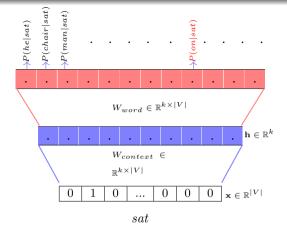
$$v_w = v_w + \eta u_c (1 - \hat{y}_w)$$

• If $\hat{y}_w \to 1$ then we are already predicting the right word and v_w will not be updated



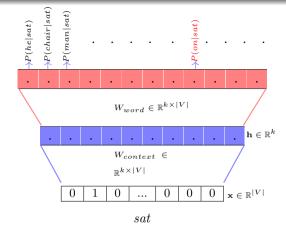
$$v_w = v_w + \eta u_c (1 - \hat{y}_w)$$

- If $\hat{y}_w \to 1$ then we are already predicting the right word and v_w will not be updated
- If $\hat{y}_w \to 0$ then v_w gets updated by adding a fraction of u_c to it



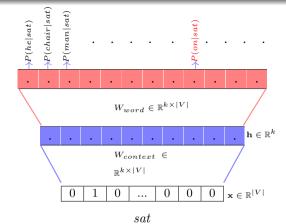
$$v_w = v_w + \eta u_c (1 - \hat{y}_w)$$

- If $\hat{y}_w \to 1$ then we are already predicting the right word and v_w will not be updated
- If $\hat{y}_w \to 0$ then v_w gets updated by adding a fraction of u_c to it
- This increases the cosine similarity between v_w and u_c (How? Refer to slide 38 of Lecture 2)

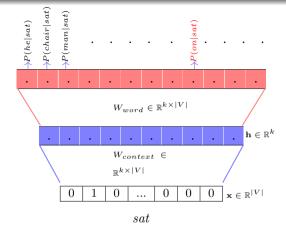


$$v_w = v_w + \eta u_c (1 - \hat{y}_w)$$

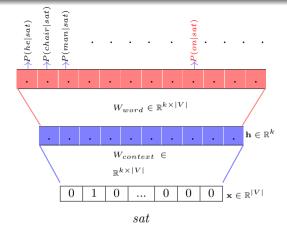
- If $\hat{y}_w \to 1$ then we are already predicting the right word and v_w will not be updated
- If $\hat{y}_w \to 0$ then v_w gets updated by adding a fraction of u_c to it
- This increases the cosine similarity between v_w and u_c (How? Refer to slide 38 of Lecture 2)
- The training objective ensures that the cosine similarity between word (v_w) and context word (u_c) is maximized



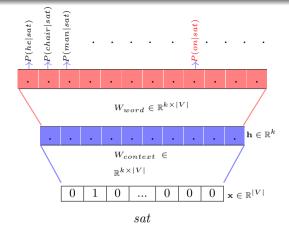
• What happens to the representations of two words w and w' which tend to appear in similar context (c)



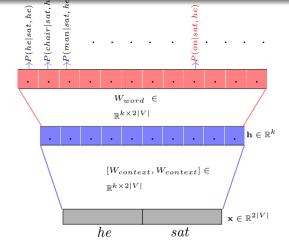
- What happens to the representations of two words w and w' which tend to appear in similar context (c)
- The training ensures that both v_w and v'_w have a high cosine similarity with u_c and hence transitively (intuitively) ensures that v_w and v'_w have a high cosine similarity with each other



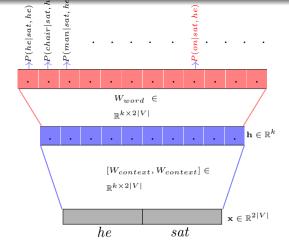
- What happens to the representations of two words w and w' which tend to appear in similar context (c)
- The training ensures that both v_w and v'_w have a high cosine similarity with u_c and hence transitively (intuitively) ensures that v_w and v'_w have a high cosine similarity with each other
- This is only an intuition (reasonable)



- What happens to the representations of two words w and w' which tend to appear in similar context (c)
- The training ensures that both v_w and v'_w have a high cosine similarity with u_c and hence transitively (intuitively) ensures that v_w and v'_w have a high cosine similarity with each other
- This is only an intuition (reasonable)
- Haven't come across a formal proof for this!

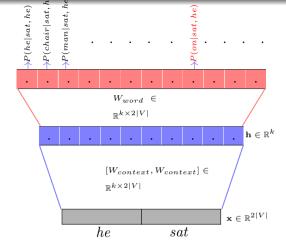


• In practice, instead of window size of 1 it is common to use a window size of d



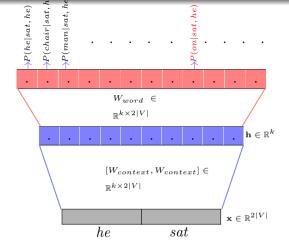
- ullet In practice, instead of window size of 1 it is common to use a window size of d
- So now,

$$h = \sum_{i=1}^{d-1} u_{c_i}$$



- In practice, instead of window size of 1 it is common to use a window size of d
- So now,

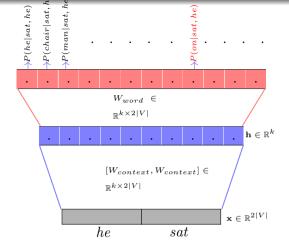
$$h = \sum_{i=1}^{d-1} u_{c_i}$$



- In practice, instead of window size of 1 it is common to use a window size of d
- So now,

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

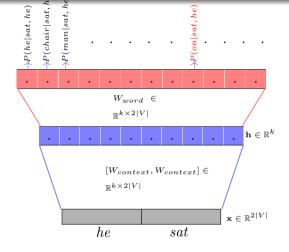
$$\begin{bmatrix} -1 & 0.5 & 2\\ 3 & -1 & -2\\ -2 & 1.7 & 3 \end{bmatrix}$$



- In practice, instead of window size of 1 it is common to use a window size of d
- So now,

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

$$\begin{bmatrix} -1 & 0.5 & 2 & -1 & 0.5 & 2 \\ 3 & -1 & -2 & 3 & -1 & -2 \\ -2 & 1.7 & 3 & -2 & 1.7 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} sat$$

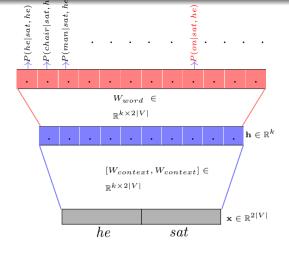


- In practice, instead of window size of 1 it is common to use a window size of d
- So now,

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

$$\begin{bmatrix} -1 & 0.5 & 2 & -1 & 0.5 & 2 \\ 3 & -1 & -2 & 3 & -1 & -2 \\ -2 & 1.7 & 3 & -2 & 1.7 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} sat$$

$$= \begin{bmatrix} 2.5 \\ -3 \\ 4.7 \end{bmatrix}$$



- In practice, instead of window size of 1 it is common to use a window size of d
- So now,

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

$$\begin{bmatrix} -1 & 0.5 & 2 & -1 & 0.5 & 2 \\ 3 & -1 & -2 & 3 & -1 & -2 \\ -2 & 1.7 & 3 & -2 & 1.7 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \} sat$$

$$= \begin{bmatrix} 2.5 \\ -3 \\ 4.7 \end{bmatrix}$$

 • Of course in practice we will not do this expensive matrix multiplication

- Of course in practice we will not do this expensive matrix multiplication
- If 'he' is i^{th} word in the vocabulary and sat is the j^{th} word then we will simply access columns $\mathbf{W}[i:]$ and $\mathbf{W}[j:]$ and add them

• Now what happens during backpropagation

- Now what happens during backpropagation
- Recall that

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

- Now what happens during backpropagation
- Recall that

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

• and

$$P(on|sat, he) = \frac{e^{(w_{word}h)[k]}}{\sum_{j} e^{(w_{word}h)[j]}}$$

- Now what happens during backpropagation
- Recall that

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

and

$$P(on|sat, he) = \frac{e^{(w_{word}h)[k]}}{\sum_{j} e^{(w_{word}h)[j]}}$$

• where 'k' is the index of the word 'on'

- Now what happens during backpropagation
- Recall that

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

and

$$P(on|sat, he) = \frac{e^{(w_{word}h)[k]}}{\sum_{j} e^{(w_{word}h)[j]}}$$

- where 'k' is the index of the word 'on'
- The loss function depends on $\{W_{word}, u_{c_1}, u_{c_2}, \dots, u_{c_{d-1}}\}$ and all these parameters will get updated during backpropagation

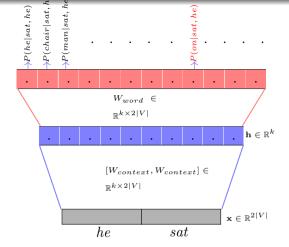
- Now what happens during backpropagation
- Recall that

$$h = \sum_{i=1}^{d-1} u_{c_i}$$

and

$$P(on|sat, he) = \frac{e^{(w_{word}h)[k]}}{\sum_{j} e^{(w_{word}h)[j]}}$$

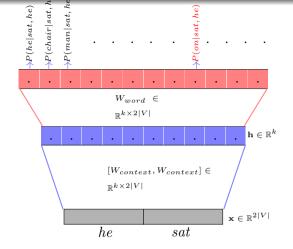
- where 'k' is the index of the word 'on'
- The loss function depends on $\{W_{word}, u_{c_1}, u_{c_2}, \dots, u_{c_{d-1}}\}$ and all these parameters will get updated during backpropagation
- Try deriving the update rule for v_w now and see how it differs from the one we derived before



Some problems:

• Notice that the softmax function at the output is computationally very expensive

$$\hat{y}_w = \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

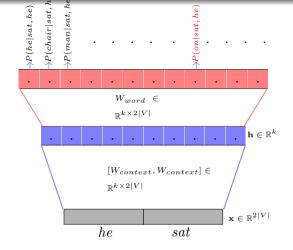


Some problems:

• Notice that the softmax function at the output is computationally very expensive

$$\hat{y}_w = \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

• The denominator requires a summation over all words in the vocabulary



Some problems:

• Notice that the softmax function at the output is computationally very expensive

$$\hat{y}_w = \frac{exp(u_c \cdot v_w)}{\sum_{w' \in V} exp(u_c \cdot v_{w'})}$$

- The denominator requires a summation over all words in the vocabulary
- We will revisit this issue soon