Module 10.5: Skip-gram model

• The model that we just saw is called the continuous bag of words model (it predicts an output word give a bag of context words)

- The model that we just saw is called the continuous bag of words model (it predicts an output word give a bag of context words)
- We will now see the skip gram model (which predicts context words given an input word)

• Notice that the role of *context* and *word* has changed now

- Notice that the role of *context* and *word* has changed now
- In the simple case when there is only one *context* word, we will arrive at the same update rule for u_c as we did for v_w earlier

- Notice that the role of *context* and *word* has changed now
- In the simple case when there is only one *context* word, we will arrive at the same update rule for u_c as we did for v_w earlier
- Notice that even when we have multiple context words the loss function would just be a summation of many cross entropy errors

$$\mathscr{L}(\theta) = -\sum_{i=1}^{d-1} \log \hat{y}_{w_i}$$

- Notice that the role of *context* and *word* has changed now
- In the simple case when there is only one *context* word, we will arrive at the same update rule for u_c as we did for v_w earlier
- Notice that even when we have multiple context words the loss function would just be a summation of many cross entropy errors

$$\mathscr{L}(\theta) = -\sum_{i=1}^{d-1} \log \hat{y}_{w_i}$$

• Typically, we predict context words on both sides of the given word

• Same as bag of words

${\bf Some\ problems}$

- Same as bag of words
- The softmax function at the output is computationally expensive

- Same as bag of words
- The softmax function at the output is computationally expensive
- Solution 1: Use negative sampling

- Same as bag of words
- The softmax function at the output is computationally expensive
- Solution 1: Use negative sampling
- Solution 2: Use contrastive estimation

- Same as bag of words
- The softmax function at the output is computationally expensive
- Solution 1: Use negative sampling
- Solution 2: Use contrastive estimation
- Solution 3: Use hierarchical softmax

- Same as bag of words
- The softmax function at the output is computationally expensive
- Solution 1: Use negative sampling
- Solution 2: Use contrastive estimation
- Solution 3: Use hierarchical softmax

- D = [(sat, on), (sat, a), (sat, chair), (on, a), (on,chair), (a,chair), (on,sat), (a, sat), (chair,sat), (a, on), (chair, on), (chair, a)]
- Let D be the set of all correct (w, c) pairs in the corpus

- D = [(sat, on), (sat, a), (sat, chair), (on, a), (on,chair), (a,chair), (on,sat), (a, sat), (chair,sat), (a, on), (chair, on), (chair, a)]
- D' = [(sat, oxygen), (sat, magic), (chair, sad), (chair, walking)]

- Let D be the set of all correct (w, c) pairs in the corpus
- Let D' be the set of all incorrect (w,r) pairs in the corpus

- D = [(sat, on), (sat, a), (sat, chair), (on, a), (on,chair), (a,chair), (on,sat), (a, sat), (chair,sat), (a, on), (chair, on), (chair, a)]
- D' = [(sat, oxygen), (sat, magic), (chair, sad), (chair, walking)]

- Let D be the set of all correct (w, c) pairs in the corpus
- Let D' be the set of all incorrect (w,r) pairs in the corpus
- D' can be constructed by randomly sampling a context word r which has never appeared with w and creating a pair (w, r)

- D = [(sat, on), (sat, a), (sat, chair), (on, a), (on,chair), (a,chair), (on,sat), (a, sat), (chair,sat), (a, on), (chair, on), (chair, a)]
- D' = [(sat, oxygen), (sat, magic), (chair, sad), (chair, walking)]

- Let D be the set of all correct (w, c) pairs in the corpus
- Let D' be the set of all incorrect (w, r) pairs in the corpus
- D' can be constructed by randomly sampling a context word r which has never appeared with w and creating a pair (w, r)
- As before let v_w be the representation of the word w and u_c be the representation of the context word c

• For a given $(w,c) \in D$ we are interested in maximizing

$$p(z=1|w,c)$$

• For a given $(w,c) \in D$ we are interested in maximizing

$$p(z=1|w,c)$$

• Let us model this probability by

$$p(z = 1|w, c) = \sigma(u_c^T v_w)$$
$$= \frac{1}{1 + e^{-u_c^T v_w}}$$

• For a given $(w, c) \in D$ we are interested in maximizing

$$p(z=1|w,c)$$

• Let us model this probability by

$$p(z = 1|w, c) = \sigma(u_c^T v_w)$$
$$= \frac{1}{1 + e^{-u_c^T v_w}}$$

• Considering all $(w,c) \in D$, we are interested in

$$\underset{\theta}{maximize} \prod_{(w,c) \in D} p(z=1|w,c)$$

where θ is the word representation (v_w) and context representation (u_c) for all words in our corpus

$$p(z=0|w,r)$$

$$p(z=0|w,r)$$

$$p(z = 0|w, r) = 1 - \sigma(u_r^T v_w)$$

$$p(z=0|w,r)$$

$$p(z = 0|w, r) = 1 - \sigma(u_r^T v_w)$$
$$= 1 - \frac{1}{1 + e^{-v_r^T v_w}}$$

$$p(z=0|w,r)$$

$$p(z = 0|w, r) = 1 - \sigma(u_r^T v_w)$$

$$= 1 - \frac{1}{1 + e^{-v_r^T v_w}}$$

$$= \frac{1}{1 + e^{u_r^T v_w}}$$

$$p(z=0|w,r)$$

$$p(z = 0|w, r) = 1 - \sigma(u_r^T v_w)$$

$$= 1 - \frac{1}{1 + e^{-v_r^T v_w}}$$

$$= \frac{1}{1 + e^{u_r^T v_w}} = \sigma(-u_r^T v_w)$$

$$p(z=0|w,r)$$

• Again we model this as

$$p(z = 0|w, r) = 1 - \sigma(u_r^T v_w)$$

$$= 1 - \frac{1}{1 + e^{-v_r^T v_w}}$$

$$= \frac{1}{1 + e^{u_r^T v_w}} = \sigma(-u_r^T v_w)$$

• Considering all $(w,r) \in D'$, we are interested in

$$maximize \prod_{(w,r) \in D' \atop \emptyset} p(z=0|w,r)$$

$$P(z=0|w,r)$$

$$\sigma$$

$$v_w$$

$$\underset{\theta}{maximize} \prod_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} p(z=0|w,r)$$

$$\begin{split} & \underset{\theta}{maximize} \prod_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} p(z=0|w,r) \\ = & \underset{\theta}{maximize} \prod_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} (1-p(z=1|w,r)) \end{split}$$

$$\begin{split} & \underset{\theta}{maximize} \prod_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} p(z=0|w,r) \\ = & \underset{\theta}{maximize} \prod_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} (1-p(z=1|w,r)) \\ = & \underset{\theta}{maximize} \sum_{(w,c) \in D} \log p(z=1|w,c) \\ &+ \sum_{(w,r) \in D'} \log (1-p(z=1|w,r)) \end{split}$$

$$\begin{split} \max_{\theta} & \max_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} p(z=0|w,r) \\ = & \max_{\theta} \min_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} (1-p(z=1|w,r)) \\ = & \max_{\theta} \max_{(w,c) \in D} \log p(z=1|w,c) \\ &+ \sum_{(w,r) \in D'} \log (1-p(z=1|w,r)) \\ = & \max_{\theta} \max_{(w,c) \in D} \log \frac{1}{1+e^{-v_c^T v_w}} + \sum_{(w,r) \in D'} \log \frac{1}{1+e^{v_r^T v_w}} \end{split}$$

$$\begin{split} \max_{\theta} & \max_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} p(z=0|w,r) \\ = & \max_{\theta} \lim ze \prod_{(w,c) \in D} p(z=1|w,c) \prod_{(w,r) \in D'} (1-p(z=1|w,r)) \\ = & \max_{\theta} \lim ze \sum_{(w,c) \in D} \log p(z=1|w,c) \\ & + \sum_{(w,r) \in D'} \log (1-p(z=1|w,r)) \\ = & \max_{\theta} \lim ze \sum_{(w,c) \in D} \log \frac{1}{1+e^{-v_c^T v_w}} + \sum_{(w,r) \in D'} \log \frac{1}{1+e^{v_r^T v_w}} \\ = & \max_{\theta} \lim ze \sum_{(w,c) \in D} \log \sigma(v_c^T v_w) + \sum_{(w,r) \in D'} \log \sigma(-v_r^T v_w) \\ & \text{where } \sigma(x) = \frac{1}{1+e^{-x}} \end{split}$$

• In the original paper, $Mikolov\ et.\ al.$ sample k negative (w,r) pairs for every positive (w,c) pairs

- In the original paper, $Mikolov\ et.\ al.$ sample k negative (w,r) pairs for every positive (w,c) pairs
- The size of D' is thus k times the size of D

- In the original paper, Mikolov et. al. sample k negative (w, r) pairs for every positive (w, c) pairs
- The size of D' is thus k times the size of D
- The random context word is drawn from a modified unigram distribution

- In the original paper, Mikolov et. al. sample k negative (w, r) pairs for every positive (w, c) pairs
- The size of D' is thus k times the size of D
- The random context word is drawn from a modified unigram distribution

$$r \sim p(r)^{\frac{3}{4}}$$

$$r \sim \frac{count(r)^{\frac{3}{4}}}{N}$$

N = total number of words in the corpus