Module 10.9: Evaluating word representations

How do we evaluate the learned word representations ?

• Ask humans to judge the relatedness between a pair of words

$$S_{human}(cat, dog) = 0.8$$

$$S_{human}(cat, dog) = 0.8$$

$$S_{model}(cat, dog) = \frac{v_{cat}^T v_{dog}}{\parallel v_{cat} \parallel \parallel v_{dog} \parallel} = 0.7$$

- Ask humans to judge the relatedness between a pair of words
- Compute the cosine similarity between the corresponding word vectors learned by the model

$$S_{human}(cat, dog) = 0.8$$

$$S_{model}(cat, dog) = \frac{v_{cat}^T v_{dog}}{\parallel v_{cat} \parallel \parallel v_{dog} \parallel} = 0.7$$

- Ask humans to judge the relatedness between a pair of words
- Compute the cosine similarity between the corresponding word vectors learned by the model
- Given a large number of such word pairs, compute the correlation between $S_{model} \& S_{human}$, and compare different models

$$S_{human}(cat, dog) = 0.8$$

$$S_{model}(cat, dog) = \frac{v_{cat}^T v_{dog}}{\parallel v_{cat} \parallel \parallel v_{dog} \parallel} = 0.7$$

- Ask humans to judge the relatedness between a pair of words
- Compute the cosine similarity between the corresponding word vectors learned by the model
- Given a large number of such word pairs, compute the correlation between S_{model} & S_{human} , and compare different models
- Model 1 is better than Model 2 if

$$correlation(S_{model1}, S_{human})$$

> $correlation(S_{model2}, S_{human})$

• Given: a term and four candidate synonyms

Term: levied

Candidates: {unposed,

believed, requested, correlated}

- Given: a term and four candidate synonyms
- Pick the candidate which has the largest cosine similarity with the term

Term: levied

Candidates: {unposed,

believed, requested, correlated}

 $\mathbf{Synonym} := \underset{c \in C}{argmax} \ cosine(v_{term}, v_c)$

- Given: a term and four candidate synonyms
- Pick the candidate which has the largest cosine similarity with the term
- Compute the accuracy of different models and compare

Term: levied

Candidates: {unposed,

believed, requested, correlated}

 $\mathbf{Synonym} := \underset{c \in C}{argmax} \ cosine(v_{term}, v_c)$

Analogy

Analogy

• Semantic Analogy: Find nearest neighbour of $v_{brother} - v_{sister} + v_{grandson}$

brother: sister:: grandson:?

brother: sister:: grandson:? work: works:: speak:?

Analogy

- Semantic Analogy: Find nearest neighbour of $v_{brother} v_{sister} + v_{grandson}$
- Syntactic Analogy: Find nearest neighbour of $V_{work} v_{works} + v_{speak}$

• So which algorithm gives the best result ?

- So which algorithm gives the best result?
- Boroni et.al [2014] showed that predict models consistently outperform count models in all tasks.

- So which algorithm gives the best result?
- Boroni et.al [2014] showed that predict models consistently outperform count models in all tasks.
- Levy et.al [2015] do a much more through analysis (IMO) and show that good old SVD does better than prediction based models on similarity tasks but not on analogy tasks.