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dimensional

@ We just slide the filter over the window
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@ In practice, we would only sum over a
6 small window
St = th,aW,a
a=0 °

@ Here the input (and the kernel) is one
dimensional

This weight array is known as the filter

@ We just slide the filter over the window
W_g W5 W_q W_3 W_2 W_1 Wp and compute the value of s; based on a
W l0.01]0.01/0.02/0.02] 1 |04 |05 | window arount x,

@ Can we use a Convolutional operation on
X ‘1.00‘1.10‘1.20‘1.40‘1.70‘1.80‘1.90‘2.10‘2.20‘2.40‘2.50‘2.70‘ a 2d input also?
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We can think of images as 2d inputs

q We would now like to use a 2d filter
: (mxn)

@ First let us see what the 2d formula
looks like

@ This formula looks at all the preceding
neighbours (i — a,j — b)

@ In practice, we use the following
formula which looks at the succeeding
o neighbours
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and see the results
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@ For the rest of the discussion we will
use the following formula for
convolution

@ In other words we will assume that the
kernel is centered on the pixel of
interest

@ So we will be looking at both
preceeding and succeeding neighbors

CNN
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@ In 1D convolution, we slide a one
dimensional filter over a one dimensional
input

@ In 2D convolution, we slide a two
dimenstional filter over a two dimensional
output

@ What would a 3D convolution look like?
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@ The resulting output is called a feature
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@ What would a 3D filter look like?

@ Once again you will slide the volume

.‘ over the image and compute the
.0.0 convolution image.
0.0.0 @ Note that the filter always extends the
000 depth of the image.
(N} . .
000 @ Also note that 3D filter applied to a
..... 3D input results in a 2D output.
(N}
000
(I}
0000
(I}
000
(N}
[}
0
0

OUTPUT

INPUT
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What would a 3D filter look like?

Once again you will slide the volume
over the image and compute the
convolution image.

Note that the filter always extends the
depth of the image.

Also note that 3D filter applied to a
3D input results in a 2D output.

Once again we can apply multiple
filters to get multiple feature maps.
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@ We will see how they are related but before that we will define a few quantities.
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@ We first define the following

CNN

quantities.

Width (W;), Height (H;) and Depth
(D1) of the original input.

The Stride S.(We will come back to
this later)

The number of filters K.

The spatial extend (F) of each filter
(the depth of each filter is same as the
depth of each input.

The output is Wa x Hy x Dy (we will

soon see a formula for computing W5,
H2 and D2.



@ For example W; = 28, H; = 28,
Di;=1, K=1, F=3,5=1

Wi, — F
Wo = 1
2 5 +
28—3
= ]_:
1 +
Hy — F
H2 15 +1
28—3
= 1:
1 +
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@ What does the stride S do?
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@ What does the stride S do?

@ It defines the intervals at which the
filter is applied(here S=3)

Wy — F +2pP
Wy =
s
Hy — F +2P
Hy =
s
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Each filter gives us one 2d output.
K filters will give us K such 2D

"

0.0.0 outputs

'.'.' @ We can think of the resulting output
0.0.0 as K x Whr x H> volume
Y @ Thus equal.
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o Finally, coming to the 3d case.
@ Each filter gives us one 2d output.
e K filters will give us K such 2D
outputs
@ We can think of the resulting output
" as K x Ws x H, volume

N @ Thus equal.

@ Thus equal.
S
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Dy
Wy = WazFs2P |y
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=

—
Dy
Wy = WazFs2P |y

Hy = HFi2P 1y

D =K

Mitesh M. Khapra

CNN

Finally, coming to the 3d case.
Each filter gives us one 2d output.

K filters will give us K such 2D
outputs

We can think of the resulting output
as K x W,r x Hy volume

Thus equal.

The depth of the the resulting output
as K x W5 x H> volume

Thus equal.

The depth of the output is equal to
number of filters.



Let us do a few exercises

1
1
t+ 11
1
1

)_ L
7/
,/ //11

96 filters
Stride = 4

Padding =0

Mitesh M. Khapra CNN



227

Let us do a few exercises

1
1
t+ 11
1
1

)_ L
7/
,/ //11

96 filters
Stride = 4
Padding =0

Mitesh M. Khapra

CNN

96




227

Let us do a few exercises

55 = 2274—11 +1

1
1
t+ 11
1
1

)_-
/
’ //11

96 filters
Stride = 4
Padding =0

~

96

Mitesh M. Khapra CNN



227

Let us do a few exercises

55 = 2274—11 +1

1
1
t+ 11
1
1

)_-
/
’ //11

96 filters
Stride = 4
Padding =0

~

55 = 227;11 +1

96

Mitesh M. Khapra CNN



Let us do a few exercises

6 filters
Stride = 1

Padding =0

Mitesh M. Khapra CNN



Let us do a few exercises

6 filters
Stride = 1

Padding =0

Mitesh M. Khapra CNN



Let us do a few exercises

_ 32-5
6 filters B="r+1

Stride = 1
Padding =0

Mitesh M. Khapra CNN



32
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Putting things into perspective
e What is the connection between this operation (convolution) and neural networks?

@ We will try to understand this by considering the task of "image classification”.
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Features

Raw pixels
—— car, bus, monument, flower

LN

Edge Detector
—— car, bus, monument, flower

— car, bus, monument, flower

static feature extraction (no learning) learning weights of classifier
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WME ¢ backpropagation
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@ Can we learn multiple meaningful kernels/filters in addition to learning the weights of the
classifier?

@ Yes, we can !

@ Simply by treating these kernels as parameters and learning them in addition to the
weights of the classifier (using back propagation)
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i — car, bus, monument, flower

e
s .
WME ¢ backpropagation

03T -0 00636137 D010T4ge

@ Can we learn multiple meaningful kernels/filters in addition to learning the weights of the
classifier?

@ Yes, we can !

@ Simply by treating these kernels as parameters and learning them in addition to the
weights of the classifier (using back propagation)

@ Such a network is called a Convolutional Neural Network.
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@ Okay, | get it that the idea is to learn the kernel/filters by just treating them as
parameters of the classification model

@ But how is this different from a regular feedforward neural network

@ Let us see
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| = bw + cx + ey + hz

m=cw + dx + fy + iz
n=ew+fx+fy+iz
o=fw+gx+gy+jz

CNN



