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CS7015 (Deep Learning) : Lecture 12
Object Detection: R-CNN, Fast R-CNN, Faster R-CNN, You Only Look Once

(YOLO)
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Module 12.1 : Introduction to object detection
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So far we have looked at Image Classification

We will now move on to another Image Processing Task - Object Detection
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Task Image classification Object Detection

Output

Car Car, exact bound-
ing box contain-
ing car
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Region proposals Feature extraction

x1 x2 . . . xd

Classifier
person flag ball none

Let us see a typical pipeline for object detection

It starts with a region proposal stage where we identify potential regions which
may contain objects
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Region proposals

Feature extraction

x1 x2 . . . xd

Classifier
person flag ball none

We could think of these regions as mini-images

We extract features(SIFT, HOG, CNNs) from these mini-images
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Region proposals Feature extraction

x1 x2 . . . xd

Classifier
person flag ball none

Pass these through a standard image classifer to determine the class

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



7/47

Region proposals

h

w

h

w

h

w

Feature extraction

x1 x2 . . . xd

Bounding box regression

h∗

w∗

h∗

w∗

h∗

w∗

In addition we would also like to correct the proposed bounding boxes

This is posed as a regression problem (for example, we would like to predict w∗,
h∗ from the proposed w and h)
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Region proposals Feature extraction Classifier

Pre 2012

RCNN

Fast RCNN

Faster RCNN

Let us see how these three compo-
nents have evolved over time

Propose all possible regions in the
image of varying sizes (almost brute
force)

Use handcrafted features (SIFT,
HOG)

Train a linear classifier using these
features

We will now see three algorithms that
progressively improve these compo-
nents
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Module 12.2 : RCNN model for object detection
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Input Region ProposalsRegion Proposals
Feature Extrac-
tion

10

10

5

5

Classifier

...

Bounding Box
Regression

Selective Search for region proposals

Does hierarchical clustering at different scales

For example the figures from left to right show
clusters of increasing sizes

Such a hierarchical clustering is important
as we may find different objects at different
scales
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Input Region ProposalsRegion Proposals
Feature Extrac-
tion

10

10

5

5

Classifier

...

Bounding Box
Regression

Proposed regions are cropped to form mini im-
ages

Each mini image is scaled to match the CNN’s
(feature extractor) input size
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Input Region Proposals
Feature Extrac-
tion

10

10

5

5

Classifier

...

Bounding Box
Regression

10

10

5

5

fc7

For feature extraction any CNN
trained for Image Classification can
be used (AlexNet/ VGGNet etc.)

Outputs from fc7 layer are taken as
features

CNN is fine tuned using ground truth
(cropped) object images
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Input Region Proposals
Feature Extrac-
tion

10

10

5

5

Classifier

...

Bounding Box
Regression

. . .

Linear models (SVMs) are used for classification

(1 model per class)
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Input Region Proposals
Feature Extrac-
tion

10

10

5

5

Classifier

...

Bounding Box
Regression

(x,y)

w

h

Proposed Box

w∗

h∗(x∗,y∗)

True Box

z : features from pool5 layer of the network
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w

h
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w∗

h∗(x∗,y∗)

True Box

z : features from pool5 layer of the network

min

N∑
i=1

x∗ − x
w

− wT
1 z

The proposed regions may not be perfect

We want to learn four regression models which will
learn to predict x∗, y∗, w∗, h∗

We will see their respective objective functions
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x∗−x
w is the normalized difference between proposed x

and true x∗

If we can predict this difference we can compute x∗

The model predicts wT
1 z as this difference

The above objective function minimize the difference
between the predicted and the actual value
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Input Region ProposalsRegion Proposals
Feature Extrac-
tion

10
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5

5

WCONV
Wclassifier

Wregression

Classifier

...

Bounding Box
Regression

What are the parameters of this model?

WCONV is taken as it is from a CNN trained for Image classification (say on
ImageNet)

WCONV is then fine tuned using ground truth (cropped) object images

Wclassifier is learned using ground truth (cropped) object images

Wregression is learned using ground truth bounding boxes
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What is the computational cost for processing one image at test time?

Inference Time = Proposal Time + # Proposals × Convolution Time + #
Proposals × classification + # Proposals × regression
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Source: Ross Girshick

On average selective search
gives 2K region proposal

Each of these pass through
the CNN for feature extrac-
tion

Followed by classification
and regression
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No joint learning

Use ad hoc training objectives

Fine tune network with softmax
classifier (log loss)
Train post-hoc linear SVMs (hinge
loss)
Train post-hoc bounding-box re-
gressors (squared loss)

Training (≈ 3 days) and testing (47s
per image) is slow1.

Takes a lot of disk space

1Source: Ross Girshick
1Using VGG-Net

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



18/47

No joint learning

Use ad hoc training objectives

Fine tune network with softmax
classifier (log loss)
Train post-hoc linear SVMs (hinge
loss)
Train post-hoc bounding-box re-
gressors (squared loss)

Training (≈ 3 days) and testing (47s
per image) is slow1.

Takes a lot of disk space

1Source: Ross Girshick
1Using VGG-Net

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



18/47

No joint learning

Use ad hoc training objectives

Fine tune network with softmax
classifier (log loss)

Train post-hoc linear SVMs (hinge
loss)
Train post-hoc bounding-box re-
gressors (squared loss)

Training (≈ 3 days) and testing (47s
per image) is slow1.

Takes a lot of disk space

1Source: Ross Girshick
1Using VGG-Net

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



18/47

No joint learning

Use ad hoc training objectives

Fine tune network with softmax
classifier (log loss)
Train post-hoc linear SVMs (hinge
loss)

Train post-hoc bounding-box re-
gressors (squared loss)

Training (≈ 3 days) and testing (47s
per image) is slow1.

Takes a lot of disk space

1Source: Ross Girshick
1Using VGG-Net

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



18/47

No joint learning

Use ad hoc training objectives

Fine tune network with softmax
classifier (log loss)
Train post-hoc linear SVMs (hinge
loss)
Train post-hoc bounding-box re-
gressors (squared loss)

Training (≈ 3 days) and testing (47s
per image) is slow1.

Takes a lot of disk space

1Source: Ross Girshick
1Using VGG-Net

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



18/47

No joint learning

Use ad hoc training objectives

Fine tune network with softmax
classifier (log loss)
Train post-hoc linear SVMs (hinge
loss)
Train post-hoc bounding-box re-
gressors (squared loss)

Training (≈ 3 days) and testing (47s
per image) is slow1.

Takes a lot of disk space

1Source: Ross Girshick
1Using VGG-Net

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



18/47

No joint learning

Use ad hoc training objectives

Fine tune network with softmax
classifier (log loss)
Train post-hoc linear SVMs (hinge
loss)
Train post-hoc bounding-box re-
gressors (squared loss)

Training (≈ 3 days) and testing (47s
per image) is slow1.

Takes a lot of disk space

1Source: Ross Girshick
1Using VGG-Net

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



19/47

Region proposals Feature extraction Classifier

Pre 2012

RCNN

Region Proposals: Selective
Search

Feature Extraction: CNNs

Classifier: Linear
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Module 12.3 : Fast RCNN model for object detection
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Suppose we apply a 3 × 3 kernel on
an image

What is the region of influence of each
pixel in the resulting output ?

Each pixel contributes to a 5 × 5 re-
gion

Suppose we again apply a 3×3 kernel
on this output?

What is the region of influence of the
original pixel from the input ?

(a 7×7
region)
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Source: Ross Girshick

Using this idea we could get a bound-
ing box’s region of influence on any
layer in the CNN

The projected Region of Interest
(RoI) may be of different sizes

Divide them into k equally sized re-
gions of dimension H × W and do
max pooling in each of those regions
to construct a k dimensional vector

Connect the k dimensional vector to
a fully connected layer

This max pooling operation is call
RoI pooling
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Source: Ross Girshick

Once we have the FC layer it gives us
the representation of this region pro-
posal

We can then add a softmax layer on
top of it to compute a probability
distribution over the possible object
classes

Similarly we can add a regression
layer on top of it to predict the new
bounding box (w∗, h∗, x∗, y∗)
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Input

Conv

Max-pool

ROI

W

Recall that the last pooling layer of
VGGNet-16 results in an output of
size 512× 7× 7

We replace the last max pooling layer
by a RoI pooling layer

We set H = W = 7 and divide each
of these RoIs into (k = 49) regions

We do this for every feature map re-
sulting in an ouput of size 512× 49

This output is of the same size as the
output of the original max pooling
layer
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Input

Conv

Max-pool

ROI

W
It is thus compatible with the dimen-
sions of the weight matrix connecting
the original pooling layer to the first
FC layer

We can just retain that weight matrix
and fine tune it
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Region proposals Feature extraction Classifier

Pre 2012

RCNN

Fast RCNN

Region Proposals: Selective
Search

Feature Extraction: CNN

Classifier: CNN
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Module 12.4 : Faster RCNN model for object detection
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So far the region proposals were be-
ing made using Selective Search algo-
rithm

Idea: Can we use a CNN for making
region proposals also?

How? Well it’s slightly tricky

We will illustrate this using VG-
GNet
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w

512

h

x1 x2 ·······x512

x1 x2 ·······x512

x1 x2 ·······x512

Consider the output of the last con-
volutional layer of VGGNet

Now consider one cell in one of the
512 feature maps

If we apply a 3× 3 kernel around this
cell then we will get a 1D representa-
tion for this cell

If we repeat this for all the 512 feature
maps then we will get a 512 dimen-
sional representation for this position

We use this process to get a 512 di-
mensional representation for each of
the w × h positions
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Input

Conv

Max-pool

x1 x2 · · · · · x512

We now consider k bounding boxes
(called anchor boxes) of different sizes
& aspect ratio

We are interested in the following two
questions:

Given the 512d representation of a
position, what is the probability that
a given anchor box centered at this
position contains an object?
(Classification)

How do you predict the true bound-
ing box from this anchor box? (Re-
gression)
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We train a classification model and a
regression model to address these two
questions

How do we get the ground truth data?

What is the objective function used
for training?
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Input

Conv

Max-pool

InputInput

x1x2 · · · · · ·

Classification Regression

Consider a ground truth object and
its corresponding bounding box

Consider the projection of this image
onto the conv5 layer

Consider one such cell in the output

This cell corresponds to a patch in the
original image

Consider the center of this patch

We consider anchor boxes of different
sizes
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Classification

Regression

For each of these anchor boxes, we
would want the classifier to predict
1 if this anchor box has a reason-
able overlap (IoU > 0.7) with the true
grounding box

Similarly we would want the regres-
sion model to predict the true box
(red) from the anchor box (pink)
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Input
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Classification Regression

We train a classification model and a
regression model to address these two
questions

How do we get the ground truth data?

What is the objective function used
for training?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



34/47

The full network is trained using the following objective.

L (pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) +

λ

Nreg

∑
i

p∗iLreg(ti, t
∗
i )

p∗i = 1 if anchor box contains ground truth object

= 0 otherwise

pi = predicted probability of anchor box containing an object

Ncls = batch-size

Nreg = batch-size× k
k = anchor boxes
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Input

Conv

Max-pool

x1x2 · · · · ·x512

Classification Regression

Fast RCNN

Region Proposals

So far we have seen a CNN based ap-
proach for region proposals instead of
using selective search

We can now take these region propos-
als and then add fast RCNN on top
of it to predict the class of the object

And regress the proposed bounding
box
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Input

Conv

Max-pool

x1x2 · · · · ·x512

Classification Regression

Fast RCNN

Region Proposals

But the fast RCNN would again use
a VGG Net

Can’t we use a single VGG Net and
share the parameters of RPN and
RCNN

Yes, we can

In practice, we use a 4 step alternat-
ing training process
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Input

Conv

Max-pool

x1x2 · · · · ·x512

Classification Regression

Fast RCNN

Region Proposals

Faster RCNN:Training

Fine-tune RPN using a pre-trained
ImageNet network

Fine-tune fast RCNN from a pre-
trained ImageNet network using
bounding boxes from step 1

Keeping common convolutional layer
parameters fixed from step 2, fine-
tune RPN (post conv5 layers)

Keeping common convolution layer
parameters fixed from step 3, fine-
tune fc layers of fast RCNN
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Faster RCNN and RPN are the basis of several 1st place entries in the ILSVRC
and COCO tracks on :

Imagenet detection

COCO Segmentation

Imagenet localization

COCO detection
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Region proposals Feature extraction Classifier

Pre 2012

RCNN

Fast RCNN

Faster RCNN

Region Proposals: CNN

Feature Extraction: CNN

Classifier: CNN
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Object Detection Performance

Source: Ross Girshick
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Module 12.5 : YOLO model for object detection
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image

conv layers

feature maps

Region Proposal Network

proposals

classifier

RoI pooling

The approaches that we have seen so
far are two stage approaches

They involve a region proposal stage
and then a classification stage

Can we have an end-to-end architec-
ture which does both proposal and
classification simultaneously ?

This is the idea behind YOLO-You
Only Look Once.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



42/47

image

conv layers

feature maps

Region Proposal Network

proposals

classifier

RoI pooling

The approaches that we have seen so
far are two stage approaches

They involve a region proposal stage
and then a classification stage

Can we have an end-to-end architec-
ture which does both proposal and
classification simultaneously ?

This is the idea behind YOLO-You
Only Look Once.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



42/47

image

conv layers

feature maps

Region Proposal Network

proposals

classifier

RoI pooling

The approaches that we have seen so
far are two stage approaches

They involve a region proposal stage
and then a classification stage

Can we have an end-to-end architec-
ture which does both proposal and
classification simultaneously ?

This is the idea behind YOLO-You
Only Look Once.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



42/47

image

conv layers

feature maps

Region Proposal Network

proposals

classifier

RoI pooling

The approaches that we have seen so
far are two stage approaches

They involve a region proposal stage
and then a classification stage

Can we have an end-to-end architec-
ture which does both proposal and
classification simultaneously ?

This is the idea behind YOLO-You
Only Look Once.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



42/47

image

conv layers

feature maps

Region Proposal Network

proposals

classifier

RoI pooling

The approaches that we have seen so
far are two stage approaches

They involve a region proposal stage
and then a classification stage

Can we have an end-to-end architec-
ture which does both proposal and
classification simultaneously ?

This is the idea behind YOLO-You
Only Look Once.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



43/47

c w h x y

P (cow)

P (dog)

· ·
P (truck)

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

P (cow)

P (dog)

· ·
P (truck)

Divide an image into S × S grids
(S=7)

For each such cell we are interested in
predicting 5 + k quantities

Probability (confidence) that this cell
is indeed contained in a true bound-
ing box

Width of the bounding box

Height of the bounding box

Center (x,y) of the bounding box

Probability of the object in the
bounding box belonging to the kth

class (k - values)

The output layer thus contains S ×
S × (5 + k) elements
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S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections
Input Image

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Bounding Boxes & Confidence

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

How do we interpret this S×S×(5+k)
dimensional output?

For each cell, we are computing a
bounding box, its confidence and the
object in it

We then retain the most confident
bounding boxes and the correspond-
ing object label
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ĉ ŵ ĥ x̂ ŷ ˆ̀
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2 · · ˆ̀

k
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S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

P (cow)

P (dog)

· ·
P (truck)

How do we train this network ?

Consider a cell such that the center
of the true bonding box lies in it

The network is initialized randomly
and it will predict some values for
c, w, h, x, y & `

We can then compute the following
losses∑k

i=1(`i − ˆ̀
i)

2

And train the network to minimize
the sum of these losses
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ĉ ŵ ĥ x̂ ŷ ˆ̀
1

ˆ̀
2 · · ˆ̀

k

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detectionsS × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

c

P (cow)

P (dog)

· ·
P (truck)

How do we train this network ?

Consider a cell such that the center
of the true bonding box lies in it

The network is initialized randomly
and it will predict some values for
c, w, h, x, y & `

We can then compute the following
losses

(1− ĉ)2
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1

ˆ̀
2 · · ˆ̀

k
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Final detections

Now consider a grid which does not
contain any object

For this grid we do not care about the
predictions w, h, x, y & `

But we want the confidence to be low

So we minimize only the following loss

(0− ĉ)2

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 12



46/47
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Method Pascal 2007 mAP Speed

DPM v5 33.7 0.07 FPS — 14 sec/ image

RCNN 66.0 0.05 FPS — 20 sec/ image
Fast RCNN 70.0 0.5 FPS — 2 sec/ image

Faster RCNN 73.2 7 FPS — 140 msec/ image
YOLO 69.0 45 FPS — 22 msec/ image
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