
1/41

CS7015 (Deep Learning) : Lecture 14
Sequence Learning Problems, Recurrent Neural Networks, Backpropagation

Through Time (BPTT), Vanishing and Exploding Gradients, Truncated BPTT

Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

2/41

Module 14.1: Sequence Learning Problems

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

3/41

In feedforward and convolutional
neural networks the size of the input
was always fixed

For example, we fed fixed size (32 ×
32) images to convolutional neural
networks for image classification

Similarly in word2vec, we fed a fixed
window (k) of words to the network

Further, each input to the network
was independent of the previous or
future inputs

For example, the computatations,
outputs and decisions for two success-
ive images are completely independ-
ent of each other

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

3/41

10

10

5

5

In feedforward and convolutional
neural networks the size of the input
was always fixed

For example, we fed fixed size (32 ×
32) images to convolutional neural
networks for image classification

Similarly in word2vec, we fed a fixed
window (k) of words to the network

Further, each input to the network
was independent of the previous or
future inputs

For example, the computatations,
outputs and decisions for two success-
ive images are completely independ-
ent of each other

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

3/41

.

.

P
(h
e
|s
a
t,
h
e
)

P
(c
h
a
ir
|s
a
t,
h
e
)

P
(m
a
n
|s
a
t,
h
e
)

P
(o
n
|s
a
t,
h
e
)

.

he sat

Wcontext Wcontext

In feedforward and convolutional
neural networks the size of the input
was always fixed

For example, we fed fixed size (32 ×
32) images to convolutional neural
networks for image classification

Similarly in word2vec, we fed a fixed
window (k) of words to the network

Further, each input to the network
was independent of the previous or
future inputs

For example, the computatations,
outputs and decisions for two success-
ive images are completely independ-
ent of each other

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

3/41

10

10

5

5

apple

bus

car

...

In feedforward and convolutional
neural networks the size of the input
was always fixed

For example, we fed fixed size (32 ×
32) images to convolutional neural
networks for image classification

Similarly in word2vec, we fed a fixed
window (k) of words to the network

Further, each input to the network
was independent of the previous or
future inputs

For example, the computatations,
outputs and decisions for two success-
ive images are completely independ-
ent of each other

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

3/41

10

10

5

5

apple

bus

car

...

In feedforward and convolutional
neural networks the size of the input
was always fixed

For example, we fed fixed size (32 ×
32) images to convolutional neural
networks for image classification

Similarly in word2vec, we fed a fixed
window (k) of words to the network

Further, each input to the network
was independent of the previous or
future inputs

For example, the computatations,
outputs and decisions for two success-
ive images are completely independ-
ent of each other

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

4/41

d

e

e

e

e

p

p

〈 stop 〉

In many applications the input is not
of a fixed size

Further successive inputs may not be
independent of each other

For example, consider the task of
auto completion

Given the first character ‘d’ you want
to predict the next character ‘e’ and
so on

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

4/41

d

e

e

e

e

p

p

〈 stop 〉

In many applications the input is not
of a fixed size

Further successive inputs may not be
independent of each other

For example, consider the task of
auto completion

Given the first character ‘d’ you want
to predict the next character ‘e’ and
so on

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

4/41

d

e

e

e

e

p

p

〈 stop 〉

In many applications the input is not
of a fixed size

Further successive inputs may not be
independent of each other

For example, consider the task of
auto completion

Given the first character ‘d’ you want
to predict the next character ‘e’ and
so on

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

4/41

d

e

e

e

e

p

p

〈 stop 〉

In many applications the input is not
of a fixed size

Further successive inputs may not be
independent of each other

For example, consider the task of
auto completion

Given the first character ‘d’ you want
to predict the next character ‘e’ and
so on

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

4/41

d

e

e

e

e

p

p

〈 stop 〉

In many applications the input is not
of a fixed size

Further successive inputs may not be
independent of each other

For example, consider the task of
auto completion

Given the first character ‘d’ you want
to predict the next character ‘e’ and
so on

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

4/41

d

e

e

e

e

p

p

〈 stop 〉

In many applications the input is not
of a fixed size

Further successive inputs may not be
independent of each other

For example, consider the task of
auto completion

Given the first character ‘d’ you want
to predict the next character ‘e’ and
so on

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

4/41

d

e

e

e

e

p

p

〈 stop 〉

In many applications the input is not
of a fixed size

Further successive inputs may not be
independent of each other

For example, consider the task of
auto completion

Given the first character ‘d’ you want
to predict the next character ‘e’ and
so on

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

5/41

d

e

e

e

e

p

p

〈 stop 〉

Notice a few things

First, successive inputs are no longer
independent (while predicting ‘e’ you
would want to know what the previ-
ous input was in addition to the cur-
rent input)

Second, the length of the inputs and
the number of predictions you need
to make is not fixed (for example,
“learn”, “deep”, “machine” have dif-
ferent number of characters)

Third, each network (orange-blue-
green structure) is performing the
same task (input : character output
: character)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

5/41

d

e

e

e

e

p

p

〈 stop 〉

Notice a few things

First, successive inputs are no longer
independent (while predicting ‘e’ you
would want to know what the previ-
ous input was in addition to the cur-
rent input)

Second, the length of the inputs and
the number of predictions you need
to make is not fixed (for example,
“learn”, “deep”, “machine” have dif-
ferent number of characters)

Third, each network (orange-blue-
green structure) is performing the
same task (input : character output
: character)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

5/41

d

e

e

e

e

p

p

〈 stop 〉

Notice a few things

First, successive inputs are no longer
independent (while predicting ‘e’ you
would want to know what the previ-
ous input was in addition to the cur-
rent input)

Second, the length of the inputs and
the number of predictions you need
to make is not fixed (for example,
“learn”, “deep”, “machine” have dif-
ferent number of characters)

Third, each network (orange-blue-
green structure) is performing the
same task (input : character output
: character)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

5/41

d

e

e

e

e

p

p

〈 stop 〉

Notice a few things

First, successive inputs are no longer
independent (while predicting ‘e’ you
would want to know what the previ-
ous input was in addition to the cur-
rent input)

Second, the length of the inputs and
the number of predictions you need
to make is not fixed (for example,
“learn”, “deep”, “machine” have dif-
ferent number of characters)

Third, each network (orange-blue-
green structure) is performing the
same task (input : character output
: character)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

6/41

d

e

e

e

e

p

p

〈 stop 〉

These are known as sequence learning
problems

We need to look at a sequence of (de-
pendent) inputs and produce an out-
put (or outputs)

Each input corresponds to one time
step

Let us look at some more examples of
such problems

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

6/41

d

e

e

e

e

p

p

〈 stop 〉

These are known as sequence learning
problems

We need to look at a sequence of (de-
pendent) inputs and produce an out-
put (or outputs)

Each input corresponds to one time
step

Let us look at some more examples of
such problems

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

6/41

d

e

e

e

e

p

p

〈 stop 〉

These are known as sequence learning
problems

We need to look at a sequence of (de-
pendent) inputs and produce an out-
put (or outputs)

Each input corresponds to one time
step

Let us look at some more examples of
such problems

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

6/41

d

e

e

e

e

p

p

〈 stop 〉

These are known as sequence learning
problems

We need to look at a sequence of (de-
pendent) inputs and produce an out-
put (or outputs)

Each input corresponds to one time
step

Let us look at some more examples of
such problems

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

7/41

man

noun

is

verb

a

article

social

adjective

animal

noun

Consider the task of predicting the part
of speech tag (noun, adverb, adjective
verb) of each word in a sentence

Once we see an adjective (social) we are
almost sure that the next word should be
a noun (man)

Thus the current output (noun) depends
on the current input as well as the previ-
ous input

Further the size of the input is not fixed
(sentences could have arbitrary number
of words)

Notice that here we are interested in pro-
ducing an output at each time step

Each network is performing the same
task (input : word, output : tag)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

8/41

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Sometimes we may not be interested
in producing an output at every stage

Instead we would look at the full se-
quence and then produce an output

For example, consider the task of pre-
dicting the polarity of a movie review

The prediction clearly does not de-
pend only on the last word but also
on some words which appear before

Here again we could think that the
network is performing the same task
at each step (input : word, output :
+/−) but it’s just that we don’t care
about intermediate outputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

9/41

. . .

. . .

Surya Namaskar

Sequences could be composed of any-
thing (not just words)

For example, a video could be treated
as a sequence of images

We may want to look at the entire se-
quence and detect the activity being
performed

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

9/41

. . .

. . .

Surya Namaskar

Sequences could be composed of any-
thing (not just words)

For example, a video could be treated
as a sequence of images

We may want to look at the entire se-
quence and detect the activity being
performed

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

9/41

. . .

. . .

Surya Namaskar

Sequences could be composed of any-
thing (not just words)

For example, a video could be treated
as a sequence of images

We may want to look at the entire se-
quence and detect the activity being
performed

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

9/41

. . .

. . .

Surya Namaskar

Sequences could be composed of any-
thing (not just words)

For example, a video could be treated
as a sequence of images

We may want to look at the entire se-
quence and detect the activity being
performed

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

9/41

. . .

. . .

Surya Namaskar

Sequences could be composed of any-
thing (not just words)

For example, a video could be treated
as a sequence of images

We may want to look at the entire se-
quence and detect the activity being
performed

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

9/41

. . .

. . .

Surya Namaskar

Sequences could be composed of any-
thing (not just words)

For example, a video could be treated
as a sequence of images

We may want to look at the entire se-
quence and detect the activity being
performed

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

9/41

. . .

. . .

Surya Namaskar

Sequences could be composed of any-
thing (not just words)

For example, a video could be treated
as a sequence of images

We may want to look at the entire se-
quence and detect the activity being
performed

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

9/41

. . .

. . .

Surya Namaskar

Sequences could be composed of any-
thing (not just words)

For example, a video could be treated
as a sequence of images

We may want to look at the entire se-
quence and detect the activity being
performed

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

10/41

Module 14.2: Recurrent Neural Networks

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

11/41

How do we model such tasks involving sequences ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

12/41

Wishlist

Account for dependence between inputs

Account for variable number of inputs

Make sure that the function executed at each time step is the same

We will focus on each of these to arrive at a model for dealing with sequences

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

12/41

Wishlist

Account for dependence between inputs

Account for variable number of inputs

Make sure that the function executed at each time step is the same

We will focus on each of these to arrive at a model for dealing with sequences

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

12/41

Wishlist

Account for dependence between inputs

Account for variable number of inputs

Make sure that the function executed at each time step is the same

We will focus on each of these to arrive at a model for dealing with sequences

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

12/41

Wishlist

Account for dependence between inputs

Account for variable number of inputs

Make sure that the function executed at each time step is the same

We will focus on each of these to arrive at a model for dealing with sequences

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

13/41

s1

V

U

x1

y1

x2

y2

s2

V

U

What is the function being executed
at each time step ?

si = σ(Uxi + b)

yi = O(V si + c)

i = timestep

Since we want the same function to be
executed at each timestep we should
share the same network (i.e., same
parameters at each timestep)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

13/41

s1

V

U

x1

y1

x2

y2

s2

V

U

What is the function being executed
at each time step ?

si = σ(Uxi + b)

yi = O(V si + c)

i = timestep

Since we want the same function to be
executed at each timestep we should
share the same network (i.e., same
parameters at each timestep)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

13/41

s1

V

U

x1

y1

x2

y2

s2

V

U

What is the function being executed
at each time step ?

si = σ(Uxi + b)

yi = O(V si + c)

i = timestep

Since we want the same function to be
executed at each timestep we should
share the same network (i.e., same
parameters at each timestep)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

13/41

s1

V

U

x1

y1

x2

y2

s2

V

U

What is the function being executed
at each time step ?

si = σ(Uxi + b)

yi = O(V si + c)

i = timestep

Since we want the same function to be
executed at each timestep we should
share the same network (i.e., same
parameters at each timestep)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

13/41

s1

V

U

x1

y1

x2

y2

s2

V

U

What is the function being executed
at each time step ?

si = σ(Uxi + b)

yi = O(V si + c)

i = timestep

Since we want the same function to be
executed at each timestep we should
share the same network (i.e., same
parameters at each timestep)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

14/41

s1

V

U

x1

y1

x2

y2

s2

V

U

x3

y3

s3

V

U

x4

y4

s4

V

U

. . .

xn

yn

sn

V

U

This parameter sharing also ensures
that the network becomes agnostic to
the length (size) of the input

Since we are simply going to compute
the same function (with same para-
meters) at each timestep, the number
of timesteps doesn’t matter

We just create multiple copies of the
network and execute them at each
timestep

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

14/41

s1

V

U

x1

y1

x2

y2

s2

V

U

x3

y3

s3

V

U

x4

y4

s4

V

U

. . .

xn

yn

sn

V

U

This parameter sharing also ensures
that the network becomes agnostic to
the length (size) of the input

Since we are simply going to compute
the same function (with same para-
meters) at each timestep, the number
of timesteps doesn’t matter

We just create multiple copies of the
network and execute them at each
timestep

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

14/41

s1

V

U

x1

y1

x2

y2

s2

V

U

x3

y3

s3

V

U

x4

y4

s4

V

U

. . .

xn

yn

sn

V

U

This parameter sharing also ensures
that the network becomes agnostic to
the length (size) of the input

Since we are simply going to compute
the same function (with same para-
meters) at each timestep, the number
of timesteps doesn’t matter

We just create multiple copies of the
network and execute them at each
timestep

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

14/41

s1

V

U

x1

y1

x2

y2

s2

V

U

x3

y3

s3

V

U

x4

y4

s4

V

U

. . .

xn

yn

sn

V

U

This parameter sharing also ensures
that the network becomes agnostic to
the length (size) of the input

Since we are simply going to compute
the same function (with same para-
meters) at each timestep, the number
of timesteps doesn’t matter

We just create multiple copies of the
network and execute them at each
timestep

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

14/41

s1

V

U

x1

y1

x2

y2

s2

V

U

x3

y3

s3

V

U

x4

y4

s4

V

U

. . .

xn

yn

sn

V

U

This parameter sharing also ensures
that the network becomes agnostic to
the length (size) of the input

Since we are simply going to compute
the same function (with same para-
meters) at each timestep, the number
of timesteps doesn’t matter

We just create multiple copies of the
network and execute them at each
timestep

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

14/41

s1

V

U

x1

y1

x2

y2

s2

V

U

x3

y3

s3

V

U

x4

y4

s4

V

U

. . .

xn

yn

sn

V

U

This parameter sharing also ensures
that the network becomes agnostic to
the length (size) of the input

Since we are simply going to compute
the same function (with same para-
meters) at each timestep, the number
of timesteps doesn’t matter

We just create multiple copies of the
network and execute them at each
timestep

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

14/41

s1

V

U

x1

y1

x2

y2

s2

V

U

x3

y3

s3

V

U

x4

y4

s4

V

U

. . .

xn

yn

sn

V

U

This parameter sharing also ensures
that the network becomes agnostic to
the length (size) of the input

Since we are simply going to compute
the same function (with same para-
meters) at each timestep, the number
of timesteps doesn’t matter

We just create multiple copies of the
network and execute them at each
timestep

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

15/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

How do we account for dependence
between inputs ?

Let us first see an infeasible way of
doing this

At each timestep we will feed all the
previous inputs to the network

Is this okay ?

No, it violates the other two items on
our wishlist

How ? Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

16/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

First, the function being computed at
each time-step now is different

y1 = f1(x1)

y2 = f2(x1, x2)

y3 = f3(x1, x2, x3)

The network is now sensitive to the
length of the sequence

For example a sequence of length
10 will require f1, . . . , f10 whereas a
sequence of length 100 will require
f1, . . . , f100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

16/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

First, the function being computed at
each time-step now is different

y1 = f1(x1)

y2 = f2(x1, x2)

y3 = f3(x1, x2, x3)

The network is now sensitive to the
length of the sequence

For example a sequence of length
10 will require f1, . . . , f10 whereas a
sequence of length 100 will require
f1, . . . , f100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

16/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

First, the function being computed at
each time-step now is different

y1 = f1(x1)

y2 = f2(x1, x2)

y3 = f3(x1, x2, x3)

The network is now sensitive to the
length of the sequence

For example a sequence of length
10 will require f1, . . . , f10 whereas a
sequence of length 100 will require
f1, . . . , f100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

16/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

First, the function being computed at
each time-step now is different

y1 = f1(x1)

y2 = f2(x1, x2)

y3 = f3(x1, x2, x3)

The network is now sensitive to the
length of the sequence

For example a sequence of length
10 will require f1, . . . , f10 whereas a
sequence of length 100 will require
f1, . . . , f100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

16/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

First, the function being computed at
each time-step now is different

y1 = f1(x1)

y2 = f2(x1, x2)

y3 = f3(x1, x2, x3)

The network is now sensitive to the
length of the sequence

For example a sequence of length
10 will require f1, . . . , f10 whereas a
sequence of length 100 will require
f1, . . . , f100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

16/41

v

u

x1

y1

v

u

x2

y2

x1

v

u

x2x1 x3

y3

v

u

x3 x4

y4

x2x1

First, the function being computed at
each time-step now is different

y1 = f1(x1)

y2 = f2(x1, x2)

y3 = f3(x1, x2, x3)

The network is now sensitive to the
length of the sequence

For example a sequence of length
10 will require f1, . . . , f10 whereas a
sequence of length 100 will require
f1, . . . , f100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

17/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

. . .

xn

yn

sn
W

V

U

The solution is to add a recurrent
connection in the network,

si = σ(Uxi +Wsi−1 + b)

yi = O(V si + c)

or

yi = f(xi, si−1,W,U, V, b, c)

si is the state of the network at
timestep i

The parameters are W,U, V, c, b
which are shared across timesteps

The same network (and parameters)
can be used to compute y1, y2, . . . , y10
or y100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

17/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

. . .

xn

yn

sn
W

V

U

The solution is to add a recurrent
connection in the network,

si = σ(Uxi +Wsi−1 + b)

yi = O(V si + c)

or

yi = f(xi, si−1,W,U, V, b, c)

si is the state of the network at
timestep i

The parameters are W,U, V, c, b
which are shared across timesteps

The same network (and parameters)
can be used to compute y1, y2, . . . , y10
or y100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

17/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

. . .

xn

yn

sn
W

V

U

The solution is to add a recurrent
connection in the network,

si = σ(Uxi +Wsi−1 + b)

yi = O(V si + c)

or

yi = f(xi, si−1,W,U, V, b, c)

si is the state of the network at
timestep i

The parameters are W,U, V, c, b
which are shared across timesteps

The same network (and parameters)
can be used to compute y1, y2, . . . , y10
or y100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

17/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

. . .

xn

yn

sn
W

V

U

The solution is to add a recurrent
connection in the network,

si = σ(Uxi +Wsi−1 + b)

yi = O(V si + c)

or

yi = f(xi, si−1,W,U, V, b, c)

si is the state of the network at
timestep i

The parameters are W,U, V, c, b
which are shared across timesteps

The same network (and parameters)
can be used to compute y1, y2, . . . , y10
or y100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

17/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

. . .

xn

yn

sn
W

V

U

The solution is to add a recurrent
connection in the network,

si = σ(Uxi +Wsi−1 + b)

yi = O(V si + c)

or

yi = f(xi, si−1,W,U, V, b, c)

si is the state of the network at
timestep i

The parameters are W,U, V, c, b
which are shared across timesteps

The same network (and parameters)
can be used to compute y1, y2, . . . , y10
or y100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

17/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

. . .

xn

yn

sn
W

V

U

The solution is to add a recurrent
connection in the network,

si = σ(Uxi +Wsi−1 + b)

yi = O(V si + c)

or

yi = f(xi, si−1,W,U, V, b, c)

si is the state of the network at
timestep i

The parameters are W,U, V, c, b
which are shared across timesteps

The same network (and parameters)
can be used to compute y1, y2, . . . , y10
or y100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

17/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

. . .

xn

yn

sn
W

V

U

The solution is to add a recurrent
connection in the network,

si = σ(Uxi +Wsi−1 + b)

yi = O(V si + c)

or

yi = f(xi, si−1,W,U, V, b, c)

si is the state of the network at
timestep i

The parameters are W,U, V, c, b
which are shared across timesteps

The same network (and parameters)
can be used to compute y1, y2, . . . , y10
or y100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

17/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

. . .

xn

yn

sn
W

V

U

The solution is to add a recurrent
connection in the network,

si = σ(Uxi +Wsi−1 + b)

yi = O(V si + c)

or

yi = f(xi, si−1,W,U, V, b, c)

si is the state of the network at
timestep i

The parameters are W,U, V, c, b
which are shared across timesteps

The same network (and parameters)
can be used to compute y1, y2, . . . , y10
or y100

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

18/41

si

V

U

xi

W

yi

This can be represented more com-
pactly

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

19/41

man

noun

is

verb

a

article

social

adjective

animal

noun

. . .

. . .

Surya Namaskar

d

e

e

e

e

p

p

〈 stop 〉

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Let us revisit the sequence learning
problems that we saw earlier

We now have recurrent connections
between time steps which account for
dependence between inputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

19/41

man

noun

is

verb

a

article

social

adjective

animal

noun

. . .

. . .

Surya Namaskar

d

e

e

e

e

p

p

〈 stop 〉

The

don’t
care

movie

don’t
care

was

don’t
care

boring

don’t
care

and

don’t
care

long

+/−

Let us revisit the sequence learning
problems that we saw earlier

We now have recurrent connections
between time steps which account for
dependence between inputs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

20/41

Module 14.3: Backpropagation through time

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈

Rn×d

V ∈

Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈

Rn×d

V ∈

Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈

Rn×d

V ∈

Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈

Rn×d

V ∈

Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈

Rn×d

V ∈

Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈ Rn×d

V ∈

Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈ Rn×d

V ∈

Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈ Rn×d

V ∈ Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈ Rn×d

V ∈ Rd×k

W ∈

Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

21/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

Before proceeding let us look at the
dimensions of the parameters care-
fully

xi ∈ Rn (n-dimensional input)

si ∈ Rd (d-dimensional state)

yi ∈ Rk (say k classes)

U ∈ Rn×d

V ∈ Rd×k

W ∈ Rd×d

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

22/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

How do we train this network ?

(Ans: using backpropagation)

Let us understand this with a con-
crete example

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

22/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

How do we train this network ?
(Ans: using backpropagation)

Let us understand this with a con-
crete example

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

22/41

W

V

U

x1

y1

x2

y2

W

V

U

x3

y3

W

V

U

x4

y4

W

V

U

How do we train this network ?
(Ans: using backpropagation)

Let us understand this with a con-
crete example

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

23/41

d

e

e

e

e

p

p

〈 stop 〉

W

V

U

W

V

U

W

V

U

V

U

Suppose we consider our task of auto-
completion (predicting the next char-
acter)

For simplicity we assume that there
are only 4 characters in our vocabu-
lary (d,e,p, <stop>)

At each timestep we want to predict
one of these 4 characters

What is a suitable output function for
this task ?

(softmax)

What is a suitable loss function for
this task ? (cross entropy)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

23/41

d

e

e

e

e

p

p

〈 stop 〉

W

V

U

W

V

U

W

V

U

V

U

Suppose we consider our task of auto-
completion (predicting the next char-
acter)

For simplicity we assume that there
are only 4 characters in our vocabu-
lary (d,e,p, <stop>)

At each timestep we want to predict
one of these 4 characters

What is a suitable output function for
this task ?

(softmax)

What is a suitable loss function for
this task ? (cross entropy)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

23/41

d

e

e

e

e

p

p

〈 stop 〉

W

V

U

W

V

U

W

V

U

V

U

Suppose we consider our task of auto-
completion (predicting the next char-
acter)

For simplicity we assume that there
are only 4 characters in our vocabu-
lary (d,e,p, <stop>)

At each timestep we want to predict
one of these 4 characters

What is a suitable output function for
this task ?

(softmax)

What is a suitable loss function for
this task ? (cross entropy)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

23/41

d

e

e

e

e

p

p

〈 stop 〉

W

V

U

W

V

U

W

V

U

V

U

Suppose we consider our task of auto-
completion (predicting the next char-
acter)

For simplicity we assume that there
are only 4 characters in our vocabu-
lary (d,e,p, <stop>)

At each timestep we want to predict
one of these 4 characters

What is a suitable output function for
this task ?

(softmax)

What is a suitable loss function for
this task ? (cross entropy)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

23/41

d

e

e

e

e

p

p

〈 stop 〉

W

V

U

W

V

U

W

V

U

V

U

Suppose we consider our task of auto-
completion (predicting the next char-
acter)

For simplicity we assume that there
are only 4 characters in our vocabu-
lary (d,e,p, <stop>)

At each timestep we want to predict
one of these 4 characters

What is a suitable output function for
this task ? (softmax)

What is a suitable loss function for
this task ?

(cross entropy)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

23/41

d

e

e

e

e

p

p

〈 stop 〉

W

V

U

W

V

U

W

V

U

V

U

Suppose we consider our task of auto-
completion (predicting the next char-
acter)

For simplicity we assume that there
are only 4 characters in our vocabu-
lary (d,e,p, <stop>)

At each timestep we want to predict
one of these 4 characters

What is a suitable output function for
this task ? (softmax)

What is a suitable loss function for
this task ?

(cross entropy)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

23/41

d

e

e

e

e

p

p

〈 stop 〉

W

V

U

W

V

U

W

V

U

V

U

Suppose we consider our task of auto-
completion (predicting the next char-
acter)

For simplicity we assume that there
are only 4 characters in our vocabu-
lary (d,e,p, <stop>)

At each timestep we want to predict
one of these 4 characters

What is a suitable output function for
this task ? (softmax)

What is a suitable loss function for
this task ? (cross entropy)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

24/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d

0

e

1

p

0

stop

0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

p

True

V

U

0.2
0.1
0.7
0.1

0
0
0
1

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Suppose we initialize U, V,W ran-
domly and the network predicts the
probabilities as shown

And the true probabilities are as
shown

We need to answer two questions

What is the total loss made by the
model ?

How do we backpropagate this loss
and update the parameters (θ =
{U, V,W, b, c}) of the network ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

24/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

p

True

V

U

0.2
0.1
0.7
0.1

0
0
0
1

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Suppose we initialize U, V,W ran-
domly and the network predicts the
probabilities as shown

And the true probabilities are as
shown

We need to answer two questions

What is the total loss made by the
model ?

How do we backpropagate this loss
and update the parameters (θ =
{U, V,W, b, c}) of the network ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

24/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

p

True

V

U

0.2
0.1
0.7
0.1

0
0
0
1

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Suppose we initialize U, V,W ran-
domly and the network predicts the
probabilities as shown

And the true probabilities are as
shown

We need to answer two questions

What is the total loss made by the
model ?

How do we backpropagate this loss
and update the parameters (θ =
{U, V,W, b, c}) of the network ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

24/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

p

True

V

U

0.2
0.1
0.7
0.1

0
0
0
1

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Suppose we initialize U, V,W ran-
domly and the network predicts the
probabilities as shown

And the true probabilities are as
shown

We need to answer two questions

What is the total loss made by the
model ?

How do we backpropagate this loss
and update the parameters (θ =
{U, V,W, b, c}) of the network ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

24/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

p

True

V

U

0.2
0.1
0.7
0.1

0
0
0
1

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Suppose we initialize U, V,W ran-
domly and the network predicts the
probabilities as shown

And the true probabilities are as
shown

We need to answer two questions

What is the total loss made by the
model ?

How do we backpropagate this loss
and update the parameters (θ =
{U, V,W, b, c}) of the network ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

25/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

The total loss is simply the sum of the
loss over all time-steps

L (θ) =

T∑
t=1

Lt(θ)

Lt(θ) = −log(ytc)

ytc = predicted probability of true

character at time-step t

T = number of timesteps

For backpropagation we need to com-
pute the gradients w.r.t. W,U, V, b, c

Let us see how to do that

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

25/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

The total loss is simply the sum of the
loss over all time-steps

L (θ) =

T∑
t=1

Lt(θ)

Lt(θ) = −log(ytc)

ytc = predicted probability of true

character at time-step t

T = number of timesteps

For backpropagation we need to com-
pute the gradients w.r.t. W,U, V, b, c

Let us see how to do that

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

25/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

The total loss is simply the sum of the
loss over all time-steps

L (θ) =

T∑
t=1

Lt(θ)

Lt(θ) = −log(ytc)

ytc = predicted probability of true

character at time-step t

T = number of timesteps

For backpropagation we need to com-
pute the gradients w.r.t. W,U, V, b, c

Let us see how to do that

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

25/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

The total loss is simply the sum of the
loss over all time-steps

L (θ) =

T∑
t=1

Lt(θ)

Lt(θ) = −log(ytc)

ytc = predicted probability of true

character at time-step t

T = number of timesteps

For backpropagation we need to com-
pute the gradients w.r.t. W,U, V, b, c

Let us see how to do that

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

25/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

The total loss is simply the sum of the
loss over all time-steps

L (θ) =

T∑
t=1

Lt(θ)

Lt(θ) = −log(ytc)

ytc = predicted probability of true

character at time-step t

T = number of timesteps

For backpropagation we need to com-
pute the gradients w.r.t. W,U, V, b, c

Let us see how to do that

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

25/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

The total loss is simply the sum of the
loss over all time-steps

L (θ) =

T∑
t=1

Lt(θ)

Lt(θ) = −log(ytc)

ytc = predicted probability of true

character at time-step t

T = number of timesteps

For backpropagation we need to com-
pute the gradients w.r.t. W,U, V, b, c

Let us see how to do that

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

25/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

The total loss is simply the sum of the
loss over all time-steps

L (θ) =

T∑
t=1

Lt(θ)

Lt(θ) = −log(ytc)

ytc = predicted probability of true

character at time-step t

T = number of timesteps

For backpropagation we need to com-
pute the gradients w.r.t. W,U, V, b, c

Let us see how to do that

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

26/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider ∂L (θ)
∂V (V is a matrix

so ideally we should write ∇vL (θ))

∂L (θ)

∂V
=

T∑
t=1

∂Lt(θ)

∂V

Each term is the summation is simply
the derivative of the loss w.r.t. the
weights in the output layer

We have already seen how to do this
when we studied backpropagation

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

26/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider ∂L (θ)
∂V (V is a matrix

so ideally we should write ∇vL (θ))

∂L (θ)

∂V
=

T∑
t=1

∂Lt(θ)

∂V

Each term is the summation is simply
the derivative of the loss w.r.t. the
weights in the output layer

We have already seen how to do this
when we studied backpropagation

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

26/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider ∂L (θ)
∂V (V is a matrix

so ideally we should write ∇vL (θ))

∂L (θ)

∂V
=

T∑
t=1

∂Lt(θ)

∂V

Each term is the summation is simply
the derivative of the loss w.r.t. the
weights in the output layer

We have already seen how to do this
when we studied backpropagation

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

26/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider ∂L (θ)
∂V (V is a matrix

so ideally we should write ∇vL (θ))

∂L (θ)

∂V
=

T∑
t=1

∂Lt(θ)

∂V

Each term is the summation is simply
the derivative of the loss w.r.t. the
weights in the output layer

We have already seen how to do this
when we studied backpropagation

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

27/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider the derivative ∂L (θ)
∂W

∂L (θ)

∂W
=

T∑
t=1

∂Lt(θ)

∂W

By the chain rule of derivatives we

know that ∂Lt(θ)
∂W is obtained by sum-

ming gradients along all the paths
from Lt(θ) to W

What are the paths connecting Lt(θ)
to W ?

Let us see this by considering L4(θ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

27/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider the derivative ∂L (θ)
∂W

∂L (θ)

∂W
=

T∑
t=1

∂Lt(θ)

∂W

By the chain rule of derivatives we

know that ∂Lt(θ)
∂W is obtained by sum-

ming gradients along all the paths
from Lt(θ) to W

What are the paths connecting Lt(θ)
to W ?

Let us see this by considering L4(θ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

27/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider the derivative ∂L (θ)
∂W

∂L (θ)

∂W
=

T∑
t=1

∂Lt(θ)

∂W

By the chain rule of derivatives we

know that ∂Lt(θ)
∂W is obtained by sum-

ming gradients along all the paths
from Lt(θ) to W

What are the paths connecting Lt(θ)
to W ?

Let us see this by considering L4(θ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

27/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider the derivative ∂L (θ)
∂W

∂L (θ)

∂W
=

T∑
t=1

∂Lt(θ)

∂W

By the chain rule of derivatives we

know that ∂Lt(θ)
∂W is obtained by sum-

ming gradients along all the paths
from Lt(θ) to W

What are the paths connecting Lt(θ)
to W ?

Let us see this by considering L4(θ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

27/41

d

True

W

V

U

0.2
0.7
0.1
0.1

d 0
e 1
p 0

stop 0

Predicted

e

True

W

V

U

0.2
0.7
0.1
0.1

0
1
0
0

Predicted

e

True

W

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

e

True

V

U

0.2
0.1
0.7
0.1

0
0
1
0

Predicted

y1 y2 y3 y4

L1(θ) L2(θ) L3(θ) L4(θ)

Let us consider the derivative ∂L (θ)
∂W

∂L (θ)

∂W
=

T∑
t=1

∂Lt(θ)

∂W

By the chain rule of derivatives we

know that ∂Lt(θ)
∂W is obtained by sum-

ming gradients along all the paths
from Lt(θ) to W

What are the paths connecting Lt(θ)
to W ?

Let us see this by considering L4(θ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

28/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

L4(θ) depends on s4

s4 in turn depends on s3 and W

s3 in turn depends on s2 and W

s2 in turn depends on s1 and W

s1 in turn depends on s0 and W

where s0 is a constant starting state.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

28/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3

s2s1s0

L4(θ) depends on s4
s4 in turn depends on s3 and W

s3 in turn depends on s2 and W

s2 in turn depends on s1 and W

s1 in turn depends on s0 and W

where s0 is a constant starting state.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

28/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2

s1s0

L4(θ) depends on s4
s4 in turn depends on s3 and W

s3 in turn depends on s2 and W

s2 in turn depends on s1 and W

s1 in turn depends on s0 and W

where s0 is a constant starting state.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

28/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1

s0

L4(θ) depends on s4
s4 in turn depends on s3 and W

s3 in turn depends on s2 and W

s2 in turn depends on s1 and W

s1 in turn depends on s0 and W

where s0 is a constant starting state.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

28/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

L4(θ) depends on s4
s4 in turn depends on s3 and W

s3 in turn depends on s2 and W

s2 in turn depends on s1 and W

s1 in turn depends on s0 and W

where s0 is a constant starting state.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

29/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

What we have here is an ordered net-
work

In an ordered network each state vari-
able is computed one at a time in a
specified order (first s1, then s2 and
so on)

Now we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

We have already seen how to compute
∂L4(θ)
∂s4

when we studied backprop

But how do we compute ∂s4
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

29/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

What we have here is an ordered net-
work

In an ordered network each state vari-
able is computed one at a time in a
specified order (first s1, then s2 and
so on)

Now we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

We have already seen how to compute
∂L4(θ)
∂s4

when we studied backprop

But how do we compute ∂s4
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

29/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

What we have here is an ordered net-
work

In an ordered network each state vari-
able is computed one at a time in a
specified order (first s1, then s2 and
so on)

Now we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

We have already seen how to compute
∂L4(θ)
∂s4

when we studied backprop

But how do we compute ∂s4
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

29/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

What we have here is an ordered net-
work

In an ordered network each state vari-
able is computed one at a time in a
specified order (first s1, then s2 and
so on)

Now we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

We have already seen how to compute
∂L4(θ)
∂s4

when we studied backprop

But how do we compute ∂s4
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

29/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

What we have here is an ordered net-
work

In an ordered network each state vari-
able is computed one at a time in a
specified order (first s1, then s2 and
so on)

Now we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

We have already seen how to compute
∂L4(θ)
∂s4

when we studied backprop

But how do we compute ∂s4
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

30/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Recall that

s4 = σ(Ws3 + b)

In such an ordered network, we can’t
compute ∂s4

∂W by simply treating s3 as
a constant (because it also depends
on W)

In such networks the total derivative
∂s4
∂W has two parts

Explicit : ∂+s4
∂W , treating all other in-

puts as constant

Implicit : Summing over all indirect
paths from s4 to W

Let us see how to do this

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

30/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Recall that

s4 = σ(Ws3 + b)

In such an ordered network, we can’t
compute ∂s4

∂W by simply treating s3 as
a constant (because it also depends
on W)

In such networks the total derivative
∂s4
∂W has two parts

Explicit : ∂+s4
∂W , treating all other in-

puts as constant

Implicit : Summing over all indirect
paths from s4 to W

Let us see how to do this

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

30/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Recall that

s4 = σ(Ws3 + b)

In such an ordered network, we can’t
compute ∂s4

∂W by simply treating s3 as
a constant (because it also depends
on W)

In such networks the total derivative
∂s4
∂W has two parts

Explicit : ∂+s4
∂W , treating all other in-

puts as constant

Implicit : Summing over all indirect
paths from s4 to W

Let us see how to do this

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

30/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Recall that

s4 = σ(Ws3 + b)

In such an ordered network, we can’t
compute ∂s4

∂W by simply treating s3 as
a constant (because it also depends
on W)

In such networks the total derivative
∂s4
∂W has two parts

Explicit : ∂+s4
∂W , treating all other in-

puts as constant

Implicit : Summing over all indirect
paths from s4 to W

Let us see how to do this

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

30/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Recall that

s4 = σ(Ws3 + b)

In such an ordered network, we can’t
compute ∂s4

∂W by simply treating s3 as
a constant (because it also depends
on W)

In such networks the total derivative
∂s4
∂W has two parts

Explicit : ∂+s4
∂W , treating all other in-

puts as constant

Implicit : Summing over all indirect
paths from s4 to W

Let us see how to do this

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

30/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Recall that

s4 = σ(Ws3 + b)

In such an ordered network, we can’t
compute ∂s4

∂W by simply treating s3 as
a constant (because it also depends
on W)

In such networks the total derivative
∂s4
∂W has two parts

Explicit : ∂+s4
∂W , treating all other in-

puts as constant

Implicit : Summing over all indirect
paths from s4 to W

Let us see how to do this

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

31/41

∂s4
∂W

=
∂+s4
∂W︸ ︷︷ ︸

explicit

+
∂s4
∂s3

∂s3
∂W︸ ︷︷ ︸

implicit

=
∂+s4
∂W

+
∂s4
∂s3

[∂+s3
∂W︸ ︷︷ ︸

explicit

+
∂s3
∂s2

∂s2
∂W︸ ︷︷ ︸

implicit

]

=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

[∂+s2
∂W

+
∂s2
∂s1

∂s1
∂W

]
=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

∂+s2
∂W

+
∂s4
∂s3

∂s3
∂s2

∂s2
∂s1

[∂+s1
∂W

]
For simplicity we will short-circuit some of the paths

∂s4
∂W

=
∂s4
∂s4

∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s2

∂+s2
∂W

+
∂s4
∂s1

∂+s1
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

31/41

∂s4
∂W

=
∂+s4
∂W︸ ︷︷ ︸

explicit

+
∂s4
∂s3

∂s3
∂W︸ ︷︷ ︸

implicit

=
∂+s4
∂W

+
∂s4
∂s3

[∂+s3
∂W︸ ︷︷ ︸

explicit

+
∂s3
∂s2

∂s2
∂W︸ ︷︷ ︸

implicit

]

=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

[∂+s2
∂W

+
∂s2
∂s1

∂s1
∂W

]
=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

∂+s2
∂W

+
∂s4
∂s3

∂s3
∂s2

∂s2
∂s1

[∂+s1
∂W

]
For simplicity we will short-circuit some of the paths

∂s4
∂W

=
∂s4
∂s4

∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s2

∂+s2
∂W

+
∂s4
∂s1

∂+s1
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

31/41

∂s4
∂W

=
∂+s4
∂W︸ ︷︷ ︸

explicit

+
∂s4
∂s3

∂s3
∂W︸ ︷︷ ︸

implicit

=
∂+s4
∂W

+
∂s4
∂s3

[∂+s3
∂W︸ ︷︷ ︸

explicit

+
∂s3
∂s2

∂s2
∂W︸ ︷︷ ︸

implicit

]

=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

[∂+s2
∂W

+
∂s2
∂s1

∂s1
∂W

]

=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

∂+s2
∂W

+
∂s4
∂s3

∂s3
∂s2

∂s2
∂s1

[∂+s1
∂W

]
For simplicity we will short-circuit some of the paths

∂s4
∂W

=
∂s4
∂s4

∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s2

∂+s2
∂W

+
∂s4
∂s1

∂+s1
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

31/41

∂s4
∂W

=
∂+s4
∂W︸ ︷︷ ︸

explicit

+
∂s4
∂s3

∂s3
∂W︸ ︷︷ ︸

implicit

=
∂+s4
∂W

+
∂s4
∂s3

[∂+s3
∂W︸ ︷︷ ︸

explicit

+
∂s3
∂s2

∂s2
∂W︸ ︷︷ ︸

implicit

]

=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

[∂+s2
∂W

+
∂s2
∂s1

∂s1
∂W

]
=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

∂+s2
∂W

+
∂s4
∂s3

∂s3
∂s2

∂s2
∂s1

[∂+s1
∂W

]

For simplicity we will short-circuit some of the paths

∂s4
∂W

=
∂s4
∂s4

∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s2

∂+s2
∂W

+
∂s4
∂s1

∂+s1
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

31/41

∂s4
∂W

=
∂+s4
∂W︸ ︷︷ ︸

explicit

+
∂s4
∂s3

∂s3
∂W︸ ︷︷ ︸

implicit

=
∂+s4
∂W

+
∂s4
∂s3

[∂+s3
∂W︸ ︷︷ ︸

explicit

+
∂s3
∂s2

∂s2
∂W︸ ︷︷ ︸

implicit

]

=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

[∂+s2
∂W

+
∂s2
∂s1

∂s1
∂W

]
=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

∂+s2
∂W

+
∂s4
∂s3

∂s3
∂s2

∂s2
∂s1

[∂+s1
∂W

]
For simplicity we will short-circuit some of the paths

∂s4
∂W

=
∂s4
∂s4

∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s2

∂+s2
∂W

+
∂s4
∂s1

∂+s1
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

31/41

∂s4
∂W

=
∂+s4
∂W︸ ︷︷ ︸

explicit

+
∂s4
∂s3

∂s3
∂W︸ ︷︷ ︸

implicit

=
∂+s4
∂W

+
∂s4
∂s3

[∂+s3
∂W︸ ︷︷ ︸

explicit

+
∂s3
∂s2

∂s2
∂W︸ ︷︷ ︸

implicit

]

=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

[∂+s2
∂W

+
∂s2
∂s1

∂s1
∂W

]
=
∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s3

∂s3
∂s2

∂+s2
∂W

+
∂s4
∂s3

∂s3
∂s2

∂s2
∂s1

[∂+s1
∂W

]
For simplicity we will short-circuit some of the paths

∂s4
∂W

=
∂s4
∂s4

∂+s4
∂W

+
∂s4
∂s3

∂+s3
∂W

+
∂s4
∂s2

∂+s2
∂W

+
∂s4
∂s1

∂+s1
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

32/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Finally we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

∂s4
∂W

=
4∑

k=1

∂s4
∂sk

∂+sk
∂W

∴
∂Lt(θ)

∂W
=
∂Lt(θ)

∂st

t∑
k=1

∂st
∂sk

∂+sk
∂W

This algorithm is called backpropaga-
tion through time (BPTT) as we
backpropagate over all previous time
steps

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

32/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Finally we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

∂s4
∂W

=
4∑

k=1

∂s4
∂sk

∂+sk
∂W

∴
∂Lt(θ)

∂W
=
∂Lt(θ)

∂st

t∑
k=1

∂st
∂sk

∂+sk
∂W

This algorithm is called backpropaga-
tion through time (BPTT) as we
backpropagate over all previous time
steps

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

32/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Finally we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

∂s4
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

∴
∂Lt(θ)

∂W
=
∂Lt(θ)

∂st

t∑
k=1

∂st
∂sk

∂+sk
∂W

This algorithm is called backpropaga-
tion through time (BPTT) as we
backpropagate over all previous time
steps

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

32/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Finally we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

∂s4
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

∴
∂Lt(θ)

∂W
=
∂Lt(θ)

∂st

t∑
k=1

∂st
∂sk

∂+sk
∂W

This algorithm is called backpropaga-
tion through time (BPTT) as we
backpropagate over all previous time
steps

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

32/41

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Finally we have

∂L4(θ)

∂W
=
∂L4(θ)

∂s4

∂s4
∂W

∂s4
∂W

=

4∑
k=1

∂s4
∂sk

∂+sk
∂W

∴
∂Lt(θ)

∂W
=
∂Lt(θ)

∂st

t∑
k=1

∂st
∂sk

∂+sk
∂W

This algorithm is called backpropaga-
tion through time (BPTT) as we
backpropagate over all previous time
steps

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

33/41

Module 14.4: The problem of Exploding and Vanishing
Gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

34/41

We will now focus on ∂st
∂sk

and high-
light an important problem in train-
ing RNN’s using BPTT

∂st
∂sk

=
∂st
∂st−1

∂st−1
∂st−2

. . .
∂sk+1

∂sk

Let us look at one such term in the
product (i.e.,

∂sj+1

∂sj
)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

34/41

We will now focus on ∂st
∂sk

and high-
light an important problem in train-
ing RNN’s using BPTT

∂st
∂sk

=
∂st
∂st−1

∂st−1
∂st−2

. . .
∂sk+1

∂sk

Let us look at one such term in the
product (i.e.,

∂sj+1

∂sj
)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

34/41

We will now focus on ∂st
∂sk

and high-
light an important problem in train-
ing RNN’s using BPTT

∂st
∂sk

=
∂st
∂st−1

∂st−1
∂st−2

. . .
∂sk+1

∂sk

=

t−1∏
j=k

∂sj+1

∂sj

Let us look at one such term in the
product (i.e.,

∂sj+1

∂sj
)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

34/41

We will now focus on ∂st
∂sk

and high-
light an important problem in train-
ing RNN’s using BPTT

∂st
∂sk

=
∂st
∂st−1

∂st−1
∂st−2

. . .
∂sk+1

∂sk

=

t−1∏
j=k

∂sj+1

∂sj

Let us look at one such term in the
product (i.e.,

∂sj+1

∂sj
)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=



∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=



∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=



∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=



∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=



∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)



= diag(σ
′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)



= diag(σ
′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

35/41

aj = [aj1, aj2, aj3, . . . ajd,]

sj = [σ(aj1), σ(aj2), . . . σ(ajd)]

∂sj
∂aj

=


∂sj1
∂aj1

∂sj2
∂aj1

∂sj3
∂aj1

. . .

∂sj1
∂aj2

∂sj2
∂aj2

. . .

...
...

...
∂sjd
∂ajd



=


σ
′
(aj1) 0 0 0

0 σ
′
(aj2) 0 0

0 0
. . .

0 0 . . . σ
′
(ajd)


= diag(σ

′
(aj))

We are interested in
∂sj
∂sj−1

aj = Wsj + b

sj = σ(aj)

∂sj
∂sj−1

=
∂sj
∂aj

∂aj
∂sj−1

= diag(σ
′
(aj))W

We are interested in the magnitude
of

∂sj
∂sj−1

← if it is small (large) ∂st
∂sk

and hence ∂Lt
∂W will vanish (explode)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥

≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖

∵ σ(aj) is a bounded function (sigmoid,
tanh) σ

′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥

≤
t∏

j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

36/41

∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ =
∥∥∥diag(σ

′
(aj))W

∥∥∥
≤
∥∥∥diag(σ

′
(aj)

∥∥∥ ‖W‖
∵ σ(aj) is a bounded function (sigmoid,

tanh) σ
′
(aj) is bounded

σ
′
(aj) ≤

1

4
= γ [if σ is logistic]

≤ 1 = γ [if σ is tanh]∥∥∥∥ ∂sj
∂sj−1

∥∥∥∥ ≤ γ ‖W‖
≤ γλ

∥∥∥∥ ∂st∂sk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂sj
∂sj−1

∥∥∥∥∥∥
≤

t∏
j=k+1

γλ

≤ (γλ)t−k

If γλ < 1 the gradient will vanish

If γλ > 1 the gradient could explode

This is known as the problem of
vanishing/ exploding gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

37/41

Lt

w

v

u

x1

y1

x2

y2

w

v

u

x3

y3

w

v

u

x4

y4

w

v

u

xn

yn

w

v

u

One simple way of avoiding this is to
use truncated backpropogation
where we restrict the product to
τ(< t− k) terms

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

38/41

Module 14.5: Some Gory Details

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸

∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸

∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸

∈Rd×d

∂+sk
∂W︸ ︷︷ ︸

∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)
∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸
∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸

∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸

∈Rd×d

∂+sk
∂W︸ ︷︷ ︸

∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)
∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸
∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸
∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸

∈Rd×d

∂+sk
∂W︸ ︷︷ ︸

∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)
∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸
∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸
∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸
∈Rd×d

∂+sk
∂W︸ ︷︷ ︸

∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)
∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸
∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸
∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸
∈Rd×d

∂+sk
∂W︸ ︷︷ ︸
∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)
∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ?

Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸
∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸
∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸
∈Rd×d

∂+sk
∂W︸ ︷︷ ︸
∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)
∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ? Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸
∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸
∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸
∈Rd×d

∂+sk
∂W︸ ︷︷ ︸
∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)

∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ? Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸
∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸
∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸
∈Rd×d

∂+sk
∂W︸ ︷︷ ︸
∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)
∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ? Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

39/41

∂Lt(θ)

∂W︸ ︷︷ ︸
∈Rd×d

=
∂Lt(θ)

∂st︸ ︷︷ ︸
∈R1×d

t∑
k=1

∂st
∂sk︸︷︷︸
∈Rd×d

∂+sk
∂W︸ ︷︷ ︸
∈Rd×d×d

We know how to compute ∂Lt(θ)
∂st

(derivative of Lt(θ) (scalar) w.r.t. last
hidden layer (vector)) using backpropagation

We just saw a formula for ∂st
∂sk

which is the derivative of a vector w.r.t. a
vector)
∂+sk
∂W is a tensor ∈ Rd×d×d, the derivative of a vector ∈ Rd w.r.t. a matrix
∈ Rd×d

How do we compute ∂+sk
∂W ? Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

40/41

We just look at one element of this ∂+sk
∂W tensor

∂+skp
∂Wqr

is the (p, q, r)-th element of the 3d tensor

ak = Wsk−1 + b

sk = σ(ak)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

40/41

We just look at one element of this ∂+sk
∂W tensor

∂+skp
∂Wqr

is the (p, q, r)-th element of the 3d tensor

ak = Wsk−1 + b

sk = σ(ak)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

40/41

We just look at one element of this ∂+sk
∂W tensor

∂+skp
∂Wqr

is the (p, q, r)-th element of the 3d tensor

ak = Wsk−1 + b

sk = σ(ak)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

40/41

We just look at one element of this ∂+sk
∂W tensor

∂+skp
∂Wqr

is the (p, q, r)-th element of the 3d tensor

ak = Wsk−1 + b

sk = σ(ak)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1



ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d



akp =
d∑

i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

41/41

ak = Wsk−1

ak1
ak2

...
akp

...
akd


=



W11 W12 . . . W1d

...
...

...
...

Wp1 Wp2 . . . Wpd

...
...

...
...





sk−1,1
sk−1,2

...
sk−1,p

...
sk−1,d


akp =

d∑
i=1

Wpisk−1,i

skp = σ(akp)

∂skp
∂Wqr

=
∂skp
∂akp

∂akp
∂Wqr

= σ′(akp)
∂akp
∂Wqr

∂akp
∂Wqr

=
∂
∑d

i=1Wpisk−1,i
∂Wqr

= sk−1,i if p = q and i = r

= 0 otherwise

∂skp
∂Wqr

= σ′(akp)sk−1,r if p = q and i = r

= 0 otherwise

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 14

