
1/43

CS7015 (Deep Learning) : Lecture 15
Long Short Term Memory Cells (LSTMs), Gated Recurrent Units (GRUs)

Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



2/43

Module 15.1: Selective Read, Selective Write, Selective
Forget - The Whiteboard Analogy

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



3/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

The state (si) of an RNN records
information from all previous time
steps

At each new timestep the old
information gets morphed by the
current input

One could imagine that after t steps
the information stored at time step
t−k (for some k < t) gets completely
morphed

so much that it would be impossible
to extract the original information
stored at time step t− k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



3/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

The state (si) of an RNN records
information from all previous time
steps

At each new timestep the old
information gets morphed by the
current input

One could imagine that after t steps
the information stored at time step
t−k (for some k < t) gets completely
morphed

so much that it would be impossible
to extract the original information
stored at time step t− k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



3/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

The state (si) of an RNN records
information from all previous time
steps

At each new timestep the old
information gets morphed by the
current input

One could imagine that after t steps
the information stored at time step
t−k (for some k < t) gets completely
morphed

so much that it would be impossible
to extract the original information
stored at time step t− k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



3/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

The state (si) of an RNN records
information from all previous time
steps

At each new timestep the old
information gets morphed by the
current input

One could imagine that after t steps
the information stored at time step
t−k (for some k < t) gets completely
morphed

so much that it would be impossible
to extract the original information
stored at time step t− k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



3/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

The state (si) of an RNN records
information from all previous time
steps

At each new timestep the old
information gets morphed by the
current input

One could imagine that after t steps
the information stored at time step
t−k (for some k < t) gets completely
morphed

so much that it would be impossible
to extract the original information
stored at time step t− k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



3/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

The state (si) of an RNN records
information from all previous time
steps

At each new timestep the old
information gets morphed by the
current input

One could imagine that after t steps
the information stored at time step
t−k (for some k < t) gets completely
morphed

so much that it would be impossible
to extract the original information
stored at time step t− k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



3/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

The state (si) of an RNN records
information from all previous time
steps

At each new timestep the old
information gets morphed by the
current input

One could imagine that after t steps
the information stored at time step
t−k (for some k < t) gets completely
morphed

so much that it would be impossible
to extract the original information
stored at time step t− k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



3/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

The state (si) of an RNN records
information from all previous time
steps

At each new timestep the old
information gets morphed by the
current input

One could imagine that after t steps
the information stored at time step
t−k (for some k < t) gets completely
morphed

so much that it would be impossible
to extract the original information
stored at time step t− k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



4/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

A similar problem occurs when
the information flows backwards
(backpropagation)

It is very hard to assign the
responsibility of the error caused
at time step t to the events that
occurred at time step t− k
This responsibility is of course in the
form of gradients and we studied the
problem in backward flow of gradients

We saw a formal argument for this
while discussing vanishing gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



4/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

A similar problem occurs when
the information flows backwards
(backpropagation)

It is very hard to assign the
responsibility of the error caused
at time step t to the events that
occurred at time step t− k

This responsibility is of course in the
form of gradients and we studied the
problem in backward flow of gradients

We saw a formal argument for this
while discussing vanishing gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



4/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

A similar problem occurs when
the information flows backwards
(backpropagation)

It is very hard to assign the
responsibility of the error caused
at time step t to the events that
occurred at time step t− k
This responsibility is of course in the
form of gradients and we studied the
problem in backward flow of gradients

We saw a formal argument for this
while discussing vanishing gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



4/43

s1
W

V

U

x1

y1

s2

x2

y2

W

V

U

s3

x3

y3

W

V

U

s4

x4

y4

W

V

U

. . . st

xt

yt

W

V

U

A similar problem occurs when
the information flows backwards
(backpropagation)

It is very hard to assign the
responsibility of the error caused
at time step t to the events that
occurred at time step t− k
This responsibility is of course in the
form of gradients and we studied the
problem in backward flow of gradients

We saw a formal argument for this
while discussing vanishing gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



5/43

Let us see an analogy for this

We can think of the state as a fixed
size memory

Compare this to a fixed size white
board that you use to record
information

At each time step (periodic intervals)
we keep writing something to the
board

Effectively at each time step we
morph the information recorded till
that time point

After many timesteps it would be
impossible to see how the information
at time step t − k contributed to the
state at timestep t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



5/43

Let us see an analogy for this

We can think of the state as a fixed
size memory

Compare this to a fixed size white
board that you use to record
information

At each time step (periodic intervals)
we keep writing something to the
board

Effectively at each time step we
morph the information recorded till
that time point

After many timesteps it would be
impossible to see how the information
at time step t − k contributed to the
state at timestep t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



5/43

Let us see an analogy for this

We can think of the state as a fixed
size memory

Compare this to a fixed size white
board that you use to record
information

At each time step (periodic intervals)
we keep writing something to the
board

Effectively at each time step we
morph the information recorded till
that time point

After many timesteps it would be
impossible to see how the information
at time step t − k contributed to the
state at timestep t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



5/43

Let us see an analogy for this

We can think of the state as a fixed
size memory

Compare this to a fixed size white
board that you use to record
information

At each time step (periodic intervals)
we keep writing something to the
board

Effectively at each time step we
morph the information recorded till
that time point

After many timesteps it would be
impossible to see how the information
at time step t − k contributed to the
state at timestep t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



5/43

Let us see an analogy for this

We can think of the state as a fixed
size memory

Compare this to a fixed size white
board that you use to record
information

At each time step (periodic intervals)
we keep writing something to the
board

Effectively at each time step we
morph the information recorded till
that time point

After many timesteps it would be
impossible to see how the information
at time step t − k contributed to the
state at timestep t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



5/43

Let us see an analogy for this

We can think of the state as a fixed
size memory

Compare this to a fixed size white
board that you use to record
information

At each time step (periodic intervals)
we keep writing something to the
board

Effectively at each time step we
morph the information recorded till
that time point

After many timesteps it would be
impossible to see how the information
at time step t − k contributed to the
state at timestep t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



6/43

Continuing our whiteboard analogy,
suppose we are interested in deriving
an expression on the whiteboard

We follow the following strategy at
each time step

Selectively write on the board

Selectively read the already written
content

Selectively forget (erase) some
content

Let us look at each of these in detail

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



6/43

Continuing our whiteboard analogy,
suppose we are interested in deriving
an expression on the whiteboard

We follow the following strategy at
each time step

Selectively write on the board

Selectively read the already written
content

Selectively forget (erase) some
content

Let us look at each of these in detail

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



6/43

Continuing our whiteboard analogy,
suppose we are interested in deriving
an expression on the whiteboard

We follow the following strategy at
each time step

Selectively write on the board

Selectively read the already written
content

Selectively forget (erase) some
content

Let us look at each of these in detail

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



6/43

Continuing our whiteboard analogy,
suppose we are interested in deriving
an expression on the whiteboard

We follow the following strategy at
each time step

Selectively write on the board

Selectively read the already written
content

Selectively forget (erase) some
content

Let us look at each of these in detail

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



6/43

Continuing our whiteboard analogy,
suppose we are interested in deriving
an expression on the whiteboard

We follow the following strategy at
each time step

Selectively write on the board

Selectively read the already written
content

Selectively forget (erase) some
content

Let us look at each of these in detail

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



6/43

Continuing our whiteboard analogy,
suppose we are interested in deriving
an expression on the whiteboard

We follow the following strategy at
each time step

Selectively write on the board

Selectively read the already written
content

Selectively forget (erase) some
content

Let us look at each of these in detail

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



7/43

Selective write

There may be many steps in the
derivation but we may just skip a few

In other words we select what to
write

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



7/43

Selective write

There may be many steps in the
derivation but we may just skip a few

In other words we select what to
write

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



7/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

Selective write

There may be many steps in the
derivation but we may just skip a few

In other words we select what to
write

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



7/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

Selective write

There may be many steps in the
derivation but we may just skip a few

In other words we select what to
write

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



7/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

Selective write

There may be many steps in the
derivation but we may just skip a few

In other words we select what to
write

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



8/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

bd+ a = 34

Selective read

While writing one step we typically
read some of the previous steps we
have already written and then decide
what to write next

For example at Step 3, information
from Step 2 is important

In other words we select what to read

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



8/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

bd+ a = 34

Selective read

While writing one step we typically
read some of the previous steps we
have already written and then decide
what to write next

For example at Step 3, information
from Step 2 is important

In other words we select what to read

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



8/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

bd+ a = 34

Selective read

While writing one step we typically
read some of the previous steps we
have already written and then decide
what to write next

For example at Step 3, information
from Step 2 is important

In other words we select what to read

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



8/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

bd+ a = 34

Selective read

While writing one step we typically
read some of the previous steps we
have already written and then decide
what to write next

For example at Step 3, information
from Step 2 is important

In other words we select what to read

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



9/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

bd+ a = 34

Selective forget

Once the board is full, we need to
delete some obsolete information

But how do we decide what to delete?
We will typically delete the least
useful information

In other words we select what to
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



9/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

bd+ a = 34

Selective forget

Once the board is full, we need to
delete some obsolete information

But how do we decide what to delete?
We will typically delete the least
useful information

In other words we select what to
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



9/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd = 33

bd+ a = 34

Selective forget

Once the board is full, we need to
delete some obsolete information

But how do we decide what to delete?
We will typically delete the least
useful information

In other words we select what to
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



9/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

bd+ a = 34

Selective forget

Once the board is full, we need to
delete some obsolete information

But how do we decide what to delete?
We will typically delete the least
useful information

In other words we select what to
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



9/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

ac(bd+ a) = 170

bd+ a = 34

Selective forget

Once the board is full, we need to
delete some obsolete information

But how do we decide what to delete?
We will typically delete the least
useful information

In other words we select what to
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



9/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ac = 5

ac(bd+ a) = 170

ad = 11

Selective forget

Once the board is full, we need to
delete some obsolete information

But how do we decide what to delete?
We will typically delete the least
useful information

In other words we select what to
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



9/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ad+ ac(bd+ a) = 181

ac(bd+ a) = 170

ad = 11

Selective forget

Once the board is full, we need to
delete some obsolete information

But how do we decide what to delete?
We will typically delete the least
useful information

In other words we select what to
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



10/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ad+ ac(bd+ a) = 181

ac(bd+ a) = 170

ad = 11

There are various other scenarios
where we can motivate the need for
selective write, read and forget

For example, you could think of our
brain as something which can store
only a finite number of facts

At different time steps we selectively
read, write and forget some of these
facts

Since the RNN also has a finite state
size, we need to figure out a way to
allow it to selectively read, write and
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



10/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ad+ ac(bd+ a) = 181

ac(bd+ a) = 170

ad = 11

There are various other scenarios
where we can motivate the need for
selective write, read and forget

For example, you could think of our
brain as something which can store
only a finite number of facts

At different time steps we selectively
read, write and forget some of these
facts

Since the RNN also has a finite state
size, we need to figure out a way to
allow it to selectively read, write and
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



10/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ad+ ac(bd+ a) = 181

ac(bd+ a) = 170

ad = 11

There are various other scenarios
where we can motivate the need for
selective write, read and forget

For example, you could think of our
brain as something which can store
only a finite number of facts

At different time steps we selectively
read, write and forget some of these
facts

Since the RNN also has a finite state
size, we need to figure out a way to
allow it to selectively read, write and
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



10/43

a = 1 b = 3 c = 5 d = 11

Compute ac(bd+ a) + ad

Say “board” can have only 3 statements
at a time.

1 ac

2 bd

3 bd+ a

4 ac(bd+ a)

5 ad

6 ac(bd+ a) + ad

ad+ ac(bd+ a) = 181

ac(bd+ a) = 170

ad = 11

There are various other scenarios
where we can motivate the need for
selective write, read and forget

For example, you could think of our
brain as something which can store
only a finite number of facts

At different time steps we selectively
read, write and forget some of these
facts

Since the RNN also has a finite state
size, we need to figure out a way to
allow it to selectively read, write and
forget

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



11/43

Module 15.2: Long Short Term Memory(LSTM) and
Gated Recurrent Units(GRUs)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



12/43

Questions

Can we give a concrete example where RNNs also need to selectively read,
write and forget ?

How do we convert this intuition into mathematical equations ?

We will see
this over the next few slides

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



12/43

Questions

Can we give a concrete example where RNNs also need to selectively read,
write and forget ?

How do we convert this intuition into mathematical equations ?

We will see
this over the next few slides

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



12/43

Questions

Can we give a concrete example where RNNs also need to selectively read,
write and forget ?

How do we convert this intuition into mathematical equations ? We will see
this over the next few slides

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



13/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Consider the task of predicting the sentiment
(positive/negative) of a review

RNN reads the document from left to right
and after every word updates the state

By the time we reach the end of the document
the information obtained from the first few
words is completely lost

Ideally we want to

forget the information added by stop words
(a, the, etc.)
selectively read the information added by
previous sentiment bearing words (awesome,
amazing, etc.)
selectively write new information from the
current word to the state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



13/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Consider the task of predicting the sentiment
(positive/negative) of a review

RNN reads the document from left to right
and after every word updates the state

By the time we reach the end of the document
the information obtained from the first few
words is completely lost

Ideally we want to

forget the information added by stop words
(a, the, etc.)
selectively read the information added by
previous sentiment bearing words (awesome,
amazing, etc.)
selectively write new information from the
current word to the state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



13/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Consider the task of predicting the sentiment
(positive/negative) of a review

RNN reads the document from left to right
and after every word updates the state

By the time we reach the end of the document
the information obtained from the first few
words is completely lost

Ideally we want to

forget the information added by stop words
(a, the, etc.)
selectively read the information added by
previous sentiment bearing words (awesome,
amazing, etc.)
selectively write new information from the
current word to the state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



13/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Consider the task of predicting the sentiment
(positive/negative) of a review

RNN reads the document from left to right
and after every word updates the state

By the time we reach the end of the document
the information obtained from the first few
words is completely lost

Ideally we want to

forget the information added by stop words
(a, the, etc.)
selectively read the information added by
previous sentiment bearing words (awesome,
amazing, etc.)
selectively write new information from the
current word to the state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



13/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Consider the task of predicting the sentiment
(positive/negative) of a review

RNN reads the document from left to right
and after every word updates the state

By the time we reach the end of the document
the information obtained from the first few
words is completely lost

Ideally we want to

forget the information added by stop words
(a, the, etc.)

selectively read the information added by
previous sentiment bearing words (awesome,
amazing, etc.)
selectively write new information from the
current word to the state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



13/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Consider the task of predicting the sentiment
(positive/negative) of a review

RNN reads the document from left to right
and after every word updates the state

By the time we reach the end of the document
the information obtained from the first few
words is completely lost

Ideally we want to

forget the information added by stop words
(a, the, etc.)
selectively read the information added by
previous sentiment bearing words (awesome,
amazing, etc.)

selectively write new information from the
current word to the state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



13/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Consider the task of predicting the sentiment
(positive/negative) of a review

RNN reads the document from left to right
and after every word updates the state

By the time we reach the end of the document
the information obtained from the first few
words is completely lost

Ideally we want to

forget the information added by stop words
(a, the, etc.)
selectively read the information added by
previous sentiment bearing words (awesome,
amazing, etc.)
selectively write new information from the
current word to the state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



14/43

Questions

Can we give a concrete example where RNNs also need to selectively read,
write and forget ?

How do we convert this intuition into mathematical equations ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



15/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Recall that the blue colored vector
(st) is called the state of the RNN

It has a finite size (st ∈ Rn) and is
used to store all the information upto
timestep t

This state is analogous to the
whiteboard and sooner or later it will
get overloaded and the information
from the initial states will get
morphed beyond recognition

Wishlist: selective write, selective
read and selective forget to ensure
that this finite sized state vector is
used effectively

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



15/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Recall that the blue colored vector
(st) is called the state of the RNN

It has a finite size (st ∈ Rn) and is
used to store all the information upto
timestep t

This state is analogous to the
whiteboard and sooner or later it will
get overloaded and the information
from the initial states will get
morphed beyond recognition

Wishlist: selective write, selective
read and selective forget to ensure
that this finite sized state vector is
used effectively

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



15/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Recall that the blue colored vector
(st) is called the state of the RNN

It has a finite size (st ∈ Rn) and is
used to store all the information upto
timestep t

This state is analogous to the
whiteboard and sooner or later it will
get overloaded and the information
from the initial states will get
morphed beyond recognition

Wishlist: selective write, selective
read and selective forget to ensure
that this finite sized state vector is
used effectively

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



15/43

Review: The first half of the movie was dry but

the second half really picked up pace. The lead

actor delivered an amazing performance

The first ... ... ... performance

+/− Recall that the blue colored vector
(st) is called the state of the RNN

It has a finite size (st ∈ Rn) and is
used to store all the information upto
timestep t

This state is analogous to the
whiteboard and sooner or later it will
get overloaded and the information
from the initial states will get
morphed beyond recognition

Wishlist: selective write, selective
read and selective forget to ensure
that this finite sized state vector is
used effectively

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



16/43

-1.4

-0.4

1

...
-2

st−1

selective read
selective write
selective forget

0.7

-0.2

1.1

...
-0.3

xt

-0.9

0.2

1

...
-1.9

st

Just to be clear, we have computed
a state st−1 at timestep t − 1 and
now we want to overload it with new
information (xt) and compute a new
state (st)

While doing so we want to make sure
that we use selective write, selective
read and selective forget so that only
important information is retained in
st

We will now see how to implement
these items from our wishlist

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



16/43

-1.4

-0.4

1

...
-2

st−1

selective read
selective write
selective forget

0.7

-0.2

1.1

...
-0.3

xt

-0.9

0.2

1

...
-1.9

st

Just to be clear, we have computed
a state st−1 at timestep t − 1 and
now we want to overload it with new
information (xt) and compute a new
state (st)

While doing so we want to make sure
that we use selective write, selective
read and selective forget so that only
important information is retained in
st

We will now see how to implement
these items from our wishlist

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



16/43

-1.4

-0.4

1

...
-2

st−1

selective read
selective write
selective forget

0.7

-0.2

1.1

...
-0.3

xt

-0.9

0.2

1

...
-1.9

st

Just to be clear, we have computed
a state st−1 at timestep t − 1 and
now we want to overload it with new
information (xt) and compute a new
state (st)

While doing so we want to make sure
that we use selective write, selective
read and selective forget so that only
important information is retained in
st

We will now see how to implement
these items from our wishlist

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



17/43

-1.4

-0.4

1

...
-2

st−1

0

0

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

-0.9

0.2

1

...
-1.9

st

Selective Write

Recall that in RNNs we use st−1 to
compute st

st = σ(Wst−1 + Uxt) (ignoring bias)

But now instead of passing st−1 as it
is to st we want to pass (write) only
some portions of it to the next state

In the strictest case our decisions
could be binary (for example, retain
1st and 3rd entries and delete the
rest of the entries)

But a more sensible way of doing
this would be to assign a value
between 0 and 1 which determines
what fraction of the current state to
pass on to the next state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



17/43

-1.4

-0.4

1

...
-2

st−1

0

0

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

-0.9

0.2

1

...
-1.9

st

Selective Write

Recall that in RNNs we use st−1 to
compute st
st = σ(Wst−1 + Uxt) (ignoring bias)

But now instead of passing st−1 as it
is to st we want to pass (write) only
some portions of it to the next state

In the strictest case our decisions
could be binary (for example, retain
1st and 3rd entries and delete the
rest of the entries)

But a more sensible way of doing
this would be to assign a value
between 0 and 1 which determines
what fraction of the current state to
pass on to the next state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



17/43

-1.4

-0.4

1

...
-2

st−1

0

0

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

-0.9

0.2

1

...
-1.9

st

Selective Write

Recall that in RNNs we use st−1 to
compute st
st = σ(Wst−1 + Uxt) (ignoring bias)

But now instead of passing st−1 as it
is to st we want to pass (write) only
some portions of it to the next state

In the strictest case our decisions
could be binary (for example, retain
1st and 3rd entries and delete the
rest of the entries)

But a more sensible way of doing
this would be to assign a value
between 0 and 1 which determines
what fraction of the current state to
pass on to the next state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



17/43

-1.4

0

1

...
0

st−1

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

-0.9

0.2

1

...
-1.9

st

Selective Write

Recall that in RNNs we use st−1 to
compute st
st = σ(Wst−1 + Uxt) (ignoring bias)

But now instead of passing st−1 as it
is to st we want to pass (write) only
some portions of it to the next state

In the strictest case our decisions
could be binary (for example, retain
1st and 3rd entries and delete the
rest of the entries)

But a more sensible way of doing
this would be to assign a value
between 0 and 1 which determines
what fraction of the current state to
pass on to the next state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



17/43

-1.4

0

1

...
0

st−1

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

-0.9

0.2

1

...
-1.9

st

Selective Write

Recall that in RNNs we use st−1 to
compute st
st = σ(Wst−1 + Uxt) (ignoring bias)

But now instead of passing st−1 as it
is to st we want to pass (write) only
some portions of it to the next state

In the strictest case our decisions
could be binary (for example, retain
1st and 3rd entries and delete the
rest of the entries)

But a more sensible way of doing
this would be to assign a value
between 0 and 1 which determines
what fraction of the current state to
pass on to the next state

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



18/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

We introduce a vector ot−1 which
decides what fraction of each element
of st−1 should be passed to the next
state

Each element of ot−1 gets multiplied
with the corresponding element of
st−1

Each element of ot−1 is restricted to
be between 0 and 1

But how do we compute ot−1? How
does the RNN know what fraction of
the state to pass on?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



18/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

We introduce a vector ot−1 which
decides what fraction of each element
of st−1 should be passed to the next
state

Each element of ot−1 gets multiplied
with the corresponding element of
st−1

Each element of ot−1 is restricted to
be between 0 and 1

But how do we compute ot−1? How
does the RNN know what fraction of
the state to pass on?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



18/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

We introduce a vector ot−1 which
decides what fraction of each element
of st−1 should be passed to the next
state

Each element of ot−1 gets multiplied
with the corresponding element of
st−1

Each element of ot−1 is restricted to
be between 0 and 1

But how do we compute ot−1? How
does the RNN know what fraction of
the state to pass on?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



18/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

We introduce a vector ot−1 which
decides what fraction of each element
of st−1 should be passed to the next
state

Each element of ot−1 gets multiplied
with the corresponding element of
st−1

Each element of ot−1 is restricted to
be between 0 and 1

But how do we compute ot−1? How
does the RNN know what fraction of
the state to pass on?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



19/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

Well the RNN has to learn ot−1 along
with the other parameters (W,U, V )

We compute ot−1 and ht−1 as

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

ht−1 = ot−1 � σ(st−1)

The parameters Wo, Uo, bo need to
be learned along with the existing
parameters W,U, V

The sigmoid (logistic) function
ensures that the values are between
0 and 1

ot is called the output gate as it
decides how much to pass (write) to
the next time step

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



19/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

Well the RNN has to learn ot−1 along
with the other parameters (W,U, V )

We compute ot−1 and ht−1 as

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

ht−1 = ot−1 � σ(st−1)

The parameters Wo, Uo, bo need to
be learned along with the existing
parameters W,U, V

The sigmoid (logistic) function
ensures that the values are between
0 and 1

ot is called the output gate as it
decides how much to pass (write) to
the next time step

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



19/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

Well the RNN has to learn ot−1 along
with the other parameters (W,U, V )

We compute ot−1 and ht−1 as

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

ht−1 = ot−1 � σ(st−1)

The parameters Wo, Uo, bo need to
be learned along with the existing
parameters W,U, V

The sigmoid (logistic) function
ensures that the values are between
0 and 1

ot is called the output gate as it
decides how much to pass (write) to
the next time step

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



19/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

Well the RNN has to learn ot−1 along
with the other parameters (W,U, V )

We compute ot−1 and ht−1 as

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

ht−1 = ot−1 � σ(st−1)

The parameters Wo, Uo, bo need to
be learned along with the existing
parameters W,U, V

The sigmoid (logistic) function
ensures that the values are between
0 and 1

ot is called the output gate as it
decides how much to pass (write) to
the next time step

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



19/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

Well the RNN has to learn ot−1 along
with the other parameters (W,U, V )

We compute ot−1 and ht−1 as

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

ht−1 = ot−1 � σ(st−1)

The parameters Wo, Uo, bo need to
be learned along with the existing
parameters W,U, V

The sigmoid (logistic) function
ensures that the values are between
0 and 1

ot is called the output gate as it
decides how much to pass (write) to
the next time step

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



19/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

Well the RNN has to learn ot−1 along
with the other parameters (W,U, V )

We compute ot−1 and ht−1 as

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

ht−1 = ot−1 � σ(st−1)

The parameters Wo, Uo, bo need to
be learned along with the existing
parameters W,U, V

The sigmoid (logistic) function
ensures that the values are between
0 and 1

ot is called the output gate as it
decides how much to pass (write) to
the next time step

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



19/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

0.7

-0.2

1.1

...
-0.3

xt

-1.4

-0.4

1

...
-2

st

Selective Write

Well the RNN has to learn ot−1 along
with the other parameters (W,U, V )

We compute ot−1 and ht−1 as

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

ht−1 = ot−1 � σ(st−1)

The parameters Wo, Uo, bo need to
be learned along with the existing
parameters W,U, V

The sigmoid (logistic) function
ensures that the values are between
0 and 1

ot is called the output gate as it
decides how much to pass (write) to
the next time step

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



20/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

-1.4

-0.4

1

...
-2

st

Selective Read

We will now use ht−1 to compute the
new state at the next time step

We will also use xt which is the new
input at time step t

s̃t = σ(Wht−1 + Uxt + b)

Note that W,U and b are similar to
the parameters that we used in RNN
(for simplicity we have not shown the
bias b in the figure)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



20/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

-1.4

-0.4

1

...
-2

st

Selective Read

We will now use ht−1 to compute the
new state at the next time step

We will also use xt which is the new
input at time step t

s̃t = σ(Wht−1 + Uxt + b)

Note that W,U and b are similar to
the parameters that we used in RNN
(for simplicity we have not shown the
bias b in the figure)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



20/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

-1.4

-0.4

1

...
-2

st

Selective Read

We will now use ht−1 to compute the
new state at the next time step

We will also use xt which is the new
input at time step t

s̃t = σ(Wht−1 + Uxt + b)

Note that W,U and b are similar to
the parameters that we used in RNN
(for simplicity we have not shown the
bias b in the figure)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



21/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

Selective Read

s̃t thus captures all the information
from the previous state (ht−1) and the
current input xt

However, we may not want to
use all this new information and
only selectively read from it before
constructing the new cell state st

To do this we introduce another gate
called the input gate

it = σ(Wiht−1 + Uixt + bi)

and use it � s̃t as the selectively read
state information

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



21/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

Selective Read

s̃t thus captures all the information
from the previous state (ht−1) and the
current input xt

However, we may not want to
use all this new information and
only selectively read from it before
constructing the new cell state st

To do this we introduce another gate
called the input gate

it = σ(Wiht−1 + Uixt + bi)

and use it � s̃t as the selectively read
state information

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



21/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

Selective Read

s̃t thus captures all the information
from the previous state (ht−1) and the
current input xt

However, we may not want to
use all this new information and
only selectively read from it before
constructing the new cell state st

To do this we introduce another gate
called the input gate

it = σ(Wiht−1 + Uixt + bi)

and use it � s̃t as the selectively read
state information

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



21/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

Selective Read

s̃t thus captures all the information
from the previous state (ht−1) and the
current input xt

However, we may not want to
use all this new information and
only selectively read from it before
constructing the new cell state st

To do this we introduce another gate
called the input gate

it = σ(Wiht−1 + Uixt + bi)

and use it � s̃t as the selectively read
state information

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



21/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

Selective Read

s̃t thus captures all the information
from the previous state (ht−1) and the
current input xt

However, we may not want to
use all this new information and
only selectively read from it before
constructing the new cell state st

To do this we introduce another gate
called the input gate

it = σ(Wiht−1 + Uixt + bi)

and use it � s̃t as the selectively read
state information

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



22/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

So far we have the following

Previous state:

st−1

Output gate:

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

Selectively Write:

ht−1 = ot−1 � σ(st−1)

Current (temporary) state:

s̃t = σ(Wht−1 + Uxt + b)

Input gate:

it = σ(Wiht−1 + Uixt + bi)

Selectively Read:

it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



22/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

So far we have the following

Previous state:

st−1

Output gate:

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

Selectively Write:

ht−1 = ot−1 � σ(st−1)

Current (temporary) state:

s̃t = σ(Wht−1 + Uxt + b)

Input gate:

it = σ(Wiht−1 + Uixt + bi)

Selectively Read:

it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



22/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

So far we have the following

Previous state:

st−1

Output gate:

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

Selectively Write:

ht−1 = ot−1 � σ(st−1)

Current (temporary) state:

s̃t = σ(Wht−1 + Uxt + b)

Input gate:

it = σ(Wiht−1 + Uixt + bi)

Selectively Read:

it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



22/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

So far we have the following

Previous state:

st−1

Output gate:

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

Selectively Write:

ht−1 = ot−1 � σ(st−1)

Current (temporary) state:

s̃t = σ(Wht−1 + Uxt + b)

Input gate:

it = σ(Wiht−1 + Uixt + bi)

Selectively Read:

it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



22/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

So far we have the following

Previous state:

st−1

Output gate:

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

Selectively Write:

ht−1 = ot−1 � σ(st−1)

Current (temporary) state:

s̃t = σ(Wht−1 + Uxt + b)

Input gate:

it = σ(Wiht−1 + Uixt + bi)

Selectively Read:

it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



22/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

So far we have the following

Previous state:

st−1

Output gate:

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

Selectively Write:

ht−1 = ot−1 � σ(st−1)

Current (temporary) state:

s̃t = σ(Wht−1 + Uxt + b)

Input gate:

it = σ(Wiht−1 + Uixt + bi)

Selectively Read:

it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



22/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

-1.4

-0.4

1

...
-2

st

So far we have the following

Previous state:

st−1

Output gate:

ot−1 = σ(Woht−2 + Uoxt−1 + bo)

Selectively Write:

ht−1 = ot−1 � σ(st−1)

Current (temporary) state:

s̃t = σ(Wht−1 + Uxt + b)

Input gate:

it = σ(Wiht−1 + Uixt + bi)

Selectively Read:

it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



23/43

Selective Forget

How do we combine st−1 and s̃t to get
the new state

Here is one simple (but effective) way
of doing this:

st = st−1 + it � s̃t

But we may not want to use the whole
of st−1 but forget some parts of it

To do this we introduce the forget
gate

ft = σ(Wfht−1 + Ufxt + bf )

st = ft � st−1 + it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



23/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

=

-0.9

0.2

1

...
-1.9

st

Selective Forget

How do we combine st−1 and s̃t to get
the new state

Here is one simple (but effective) way
of doing this:

st = st−1 + it � s̃t

But we may not want to use the whole
of st−1 but forget some parts of it

To do this we introduce the forget
gate

ft = σ(Wfht−1 + Ufxt + bf )

st = ft � st−1 + it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



23/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

=

-0.9

0.2

1

...
-1.9

st

Selective Forget

How do we combine st−1 and s̃t to get
the new state

Here is one simple (but effective) way
of doing this:

st = st−1 + it � s̃t

But we may not want to use the whole
of st−1 but forget some parts of it

To do this we introduce the forget
gate

ft = σ(Wfht−1 + Ufxt + bf )

st = ft � st−1 + it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



23/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

=

-0.9

0.2

1

...
-1.9

st

Selective Forget

How do we combine st−1 and s̃t to get
the new state

Here is one simple (but effective) way
of doing this:

st = st−1 + it � s̃t

But we may not want to use the whole
of st−1 but forget some parts of it

To do this we introduce the forget
gate

ft = σ(Wfht−1 + Ufxt + bf )

st = ft � st−1 + it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



23/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-0.9

0.2

1

...
-1.9

st

Selective Forget

How do we combine st−1 and s̃t to get
the new state

Here is one simple (but effective) way
of doing this:

st = st−1 + it � s̃t

But we may not want to use the whole
of st−1 but forget some parts of it

To do this we introduce the forget
gate

ft = σ(Wfht−1 + Ufxt + bf )

st = ft � st−1 + it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



23/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-0.9

0.2

1

...
-1.9

st

Selective Forget

How do we combine st−1 and s̃t to get
the new state

Here is one simple (but effective) way
of doing this:

st = st−1 + it � s̃t

But we may not want to use the whole
of st−1 but forget some parts of it

To do this we introduce the forget
gate

ft = σ(Wfht−1 + Ufxt + bf )

st = ft � st−1 + it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



23/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-0.9

0.2

1

...
-1.9

st

Selective Forget

How do we combine st−1 and s̃t to get
the new state

Here is one simple (but effective) way
of doing this:

st = st−1 + it � s̃t

But we may not want to use the whole
of st−1 but forget some parts of it

To do this we introduce the forget
gate

ft = σ(Wfht−1 + Ufxt + bf )

st = ft � st−1 + it � s̃t

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t
ht = ot � σ(st) and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t
ht = ot � σ(st) and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t
ht = ot � σ(st) and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t
ht = ot � σ(st) and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t
ht = ot � σ(st) and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t
ht = ot � σ(st) and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t

ht = ot � σ(st) and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t
ht = ot � σ(st)

and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



24/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

We now have the full set of equations for LSTMs

The green box together with the selective write operations following it, show
all the computations which happen at timestep t

Gates:

ot = σ(Woht−1 + Uoxt + bo)

it = σ(Wiht−1 + Uixt + bi)

ft = σ(Wfht−1 + Ufxt + bf )

States:

s̃t = σ(Wht−1 + Uxt + b)

st = ft � st−1 + it � s̃t
ht = ot � σ(st) and rnnout = ht

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



25/43

Note

LSTM has many variants which include different number of gates and also
different arrangement of gates

The one which we just saw is one of the most popular variants of LSTM

Another equally popular variant of LSTM is Gated Recurrent Unit which we
will see next

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



26/43

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

ot

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

+

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

1 − it

=

-1.5

0.2

1

...
-1.9

st

The full set of equations for GRUs

Gates:
ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

States:
s̃t = σ(W (ot � st−1) + Uxt + b)

st = (1− it)� st−1 + it � s̃t

No explicit forget gate (the forget
gate and input gates are tied)

The gates depend directly on st−1 and
not the intermediate ht−1 as in the
case of LSTMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



26/43

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

ot

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

+

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

1 − it

=

-1.5

0.2

1

...
-1.9

st

The full set of equations for GRUs
Gates:

ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

States:

s̃t = σ(W (ot � st−1) + Uxt + b)

st = (1− it)� st−1 + it � s̃t

No explicit forget gate (the forget
gate and input gates are tied)

The gates depend directly on st−1 and
not the intermediate ht−1 as in the
case of LSTMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



26/43

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

ot

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

+

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

1 − it

=

-1.5

0.2

1

...
-1.9

st

The full set of equations for GRUs
Gates:

ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

States:

s̃t = σ(W (ot � st−1) + Uxt + b)

st = (1− it)� st−1 + it � s̃t

No explicit forget gate (the forget
gate and input gates are tied)

The gates depend directly on st−1 and
not the intermediate ht−1 as in the
case of LSTMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



26/43

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

ot

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

+

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

1 − it

=

-1.5

0.2

1

...
-1.9

st

The full set of equations for GRUs
Gates:

ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

States:
s̃t = σ(W (ot � st−1) + Uxt + b)

st = (1− it)� st−1 + it � s̃t

No explicit forget gate (the forget
gate and input gates are tied)

The gates depend directly on st−1 and
not the intermediate ht−1 as in the
case of LSTMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



26/43

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

ot

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

+

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

1 − it

=

-1.5

0.2

1

...
-1.9

st

The full set of equations for GRUs
Gates:

ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

States:
s̃t = σ(W (ot � st−1) + Uxt + b)

st = (1− it)� st−1 + it � s̃t

No explicit forget gate (the forget
gate and input gates are tied)

The gates depend directly on st−1 and
not the intermediate ht−1 as in the
case of LSTMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



26/43

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

ot

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

+

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

1 − it

=

-1.5

0.2

1

...
-1.9

st

The full set of equations for GRUs
Gates:

ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

States:
s̃t = σ(W (ot � st−1) + Uxt + b)

st = (1− it)� st−1 + it � s̃t

No explicit forget gate (the forget
gate and input gates are tied)

The gates depend directly on st−1 and
not the intermediate ht−1 as in the
case of LSTMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



26/43

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

ot

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

+

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

1 − it

=

-1.5

0.2

1

...
-1.9

st

The full set of equations for GRUs
Gates:

ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

States:
s̃t = σ(W (ot � st−1) + Uxt + b)

st = (1− it)� st−1 + it � s̃t

No explicit forget gate (the forget
gate and input gates are tied)

The gates depend directly on st−1 and
not the intermediate ht−1 as in the
case of LSTMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



26/43

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

ot

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

+

-1.4

-0.4

1

...
-2

st−1

�

0.2

0.34

0.9

...
0.29

1 − it

=

-1.5

0.2

1

...
-1.9

st

The full set of equations for GRUs
Gates:

ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

States:
s̃t = σ(W (ot � st−1) + Uxt + b)

st = (1− it)� st−1 + it � s̃t

No explicit forget gate (the forget
gate and input gates are tied)

The gates depend directly on st−1 and
not the intermediate ht−1 as in the
case of LSTMs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



27/43

Module 15.3: How LSTMs avoid the problem of
vanishing gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



28/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

Intuition

During forward propagation the
gates control the flow of information

They prevent any irrelevant
information from being written to
the state

Similarly during backward
propagation they control the flow of
gradients

It is easy to see that during
backward pass the gradients will get
multiplied by the gate

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



28/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

Intuition

During forward propagation the
gates control the flow of information

They prevent any irrelevant
information from being written to
the state

Similarly during backward
propagation they control the flow of
gradients

It is easy to see that during
backward pass the gradients will get
multiplied by the gate

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



28/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

Intuition

During forward propagation the
gates control the flow of information

They prevent any irrelevant
information from being written to
the state

Similarly during backward
propagation they control the flow of
gradients

It is easy to see that during
backward pass the gradients will get
multiplied by the gate

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



28/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

Intuition

During forward propagation the
gates control the flow of information

They prevent any irrelevant
information from being written to
the state

Similarly during backward
propagation they control the flow of
gradients

It is easy to see that during
backward pass the gradients will get
multiplied by the gate

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



29/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

If the state at time t− 1 did not contribute much to the state at time t (i.e., if
‖ft‖ → 0 and ‖ot−1‖ → 0) then during backpropagation the gradients flowing
into st−1 will vanish

But this kind of a vanishing gradient is fine (since st−1 did not contribute to st
we don’t want to hold it responsible for the crimes of st)

The key difference from vanilla RNNs is that the flow of information and
gradients is controlled by the gates which ensure that the gradients vanish only
when they should (i.e., when st−1 didn’t contribute much to st)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



29/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

If the state at time t− 1 did not contribute much to the state at time t (i.e., if
‖ft‖ → 0 and ‖ot−1‖ → 0) then during backpropagation the gradients flowing
into st−1 will vanish

But this kind of a vanishing gradient is fine (since st−1 did not contribute to st
we don’t want to hold it responsible for the crimes of st)

The key difference from vanilla RNNs is that the flow of information and
gradients is controlled by the gates which ensure that the gradients vanish only
when they should (i.e., when st−1 didn’t contribute much to st)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



29/43

-1.4

-0.4

1

...
-2

st−1

� =

0.2

0.34

0.9

...
0.29

ot−1

0.5

0.36

0.9

...
0.6

ht−1

selective write

W
σ

0.7

-0.2

1.1

...
-0.3

xt

U

0.4

0.6

0.1

...
0.2

s̃t

�

0.8

0.66

0.1

...
0.71

it

selective read

+

-1.4

-0.4

1

...
-2

st−1

�

0.9

0.7

0.9

...
0.8

ft

selective forget

=

-1.5

0.2

1

...
-1.9

st

� =

0.19

0.34

0.9

...
0.32

ot

0.4

0.34

0.8

...
0.12

ht

selective write

If the state at time t− 1 did not contribute much to the state at time t (i.e., if
‖ft‖ → 0 and ‖ot−1‖ → 0) then during backpropagation the gradients flowing
into st−1 will vanish

But this kind of a vanishing gradient is fine (since st−1 did not contribute to st
we don’t want to hold it responsible for the crimes of st)

The key difference from vanilla RNNs is that the flow of information and
gradients is controlled by the gates which ensure that the gradients vanish only
when they should (i.e., when st−1 didn’t contribute much to st)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



30/43

We will now see an illustrative proof of how the gates control the flow of gradients

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



31/43

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Recall that RNNs had this
multiplicative term which caused the
gradients to vanish

∂Lt(θ)

∂W
=
∂Lt(θ)

∂st

t∑
k=1

t−1∏
j=k

∂sj+1

∂sj

∂+sk
∂W

In particular, if the loss at L4(θ) was
high because W was not good enough
to compute s1 correctly then this
information will not be propagated
back to W as the gradient ∂Lt(θ)

∂W
along this long path will vanish

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



31/43

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

Recall that RNNs had this
multiplicative term which caused the
gradients to vanish

∂Lt(θ)

∂W
=
∂Lt(θ)

∂st

t∑
k=1

t−1∏
j=k

∂sj+1

∂sj

∂+sk
∂W

In particular, if the loss at L4(θ) was
high because W was not good enough
to compute s1 correctly then this
information will not be propagated
back to W as the gradient ∂Lt(θ)

∂W
along this long path will vanish

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



32/43

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

In general, the gradient of Lt(θ)
w.r.t. θi vanishes when the gradients
flowing through each and every
path from Lt(θ) to θi vanish.

On the other hand, the gradient of
Lt(θ) w.r.t. θi explodes when the
gradient flowing through at least
one path explodes.

We will first argue that in the case of
LSTMs there exists at least one path
through which the gradients can flow
effectively (and hence no vanishing
gradients)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



32/43

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

In general, the gradient of Lt(θ)
w.r.t. θi vanishes when the gradients
flowing through each and every
path from Lt(θ) to θi vanish.

On the other hand, the gradient of
Lt(θ) w.r.t. θi explodes when the
gradient flowing through at least
one path explodes.

We will first argue that in the case of
LSTMs there exists at least one path
through which the gradients can flow
effectively (and hence no vanishing
gradients)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



32/43

s1
W

V

U

x1

L1(θ)

s2

x2

L2(θ)

W

V

U

s3

x3

L3(θ)

W

V

U

s4

x4

L4(θ)

W

V

U

. . .

s4 L4(θ)

W

s3s2s1s0

In general, the gradient of Lt(θ)
w.r.t. θi vanishes when the gradients
flowing through each and every
path from Lt(θ) to θi vanish.

On the other hand, the gradient of
Lt(θ) w.r.t. θi explodes when the
gradient flowing through at least
one path explodes.

We will first argue that in the case of
LSTMs there exists at least one path
through which the gradients can flow
effectively (and hence no vanishing
gradients)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



33/43

sk−1

hk−1

oks̃k fk ik

sk
hk

We will start with the dependency graph
involving different variables in LSTMs

Starting with the states at timestep k − 1

ok = σ(Wohk−1 + Uoxk + bo)

For simplicity we will omit the parameters for
now and return back to them later

ik = σ(Wihk−1 + Uixk + bi)

fk = σ(Wfhk−1 + Ufxk + bf )

s̃k = σ(Whk−1 + Uxk + b)

sk = fk � sk−1 + ik � s̃k
hk = ok � σ(sk)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



33/43

sk−1

hk−1

oks̃k fk ik

sk
hk

We will start with the dependency graph
involving different variables in LSTMs

Starting with the states at timestep k − 1

ok = σ(Wohk−1 + Uoxk + bo)

For simplicity we will omit the parameters for
now and return back to them later

ik = σ(Wihk−1 + Uixk + bi)

fk = σ(Wfhk−1 + Ufxk + bf )

s̃k = σ(Whk−1 + Uxk + b)

sk = fk � sk−1 + ik � s̃k
hk = ok � σ(sk)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



33/43

sk−1

hk−1

sk−1

hk−1

oks̃k fk ik

sk
hk

We will start with the dependency graph
involving different variables in LSTMs

Starting with the states at timestep k − 1

ok = σ(Wohk−1 + Uoxk + bo)

For simplicity we will omit the parameters for
now and return back to them later

ik = σ(Wihk−1 + Uixk + bi)

fk = σ(Wfhk−1 + Ufxk + bf )

s̃k = σ(Whk−1 + Uxk + b)

sk = fk � sk−1 + ik � s̃k
hk = ok � σ(sk)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



33/43

sk−1

hk−1 Wo, Uo, bo

ok

oks̃k fk ik

sk
hk

We will start with the dependency graph
involving different variables in LSTMs

Starting with the states at timestep k − 1

ok = σ(Wohk−1 + Uoxk + bo)

For simplicity we will omit the parameters for
now and return back to them later

ik = σ(Wihk−1 + Uixk + bi)

fk = σ(Wfhk−1 + Ufxk + bf )

s̃k = σ(Whk−1 + Uxk + b)

sk = fk � sk−1 + ik � s̃k
hk = ok � σ(sk)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



33/43

sk−1

hk−1

ok

s̃k fk ik

sk
hk

We will start with the dependency graph
involving different variables in LSTMs

Starting with the states at timestep k − 1

ok = σ(Wohk−1 + Uoxk + bo)

For simplicity we will omit the parameters for
now and return back to them later

ik = σ(Wihk−1 + Uixk + bi)

fk = σ(Wfhk−1 + Ufxk + bf )

s̃k = σ(Whk−1 + Uxk + b)

sk = fk � sk−1 + ik � s̃k
hk = ok � σ(sk)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



33/43

sk−1

hk−1

oks̃k fk ik

s̃k fk ik

sk
hk

We will start with the dependency graph
involving different variables in LSTMs

Starting with the states at timestep k − 1

ok = σ(Wohk−1 + Uoxk + bo)

For simplicity we will omit the parameters for
now and return back to them later

ik = σ(Wihk−1 + Uixk + bi)

fk = σ(Wfhk−1 + Ufxk + bf )

s̃k = σ(Whk−1 + Uxk + b)

sk = fk � sk−1 + ik � s̃k
hk = ok � σ(sk)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



33/43

sk−1

hk−1

oks̃k fk ik

sk

sk
hk

We will start with the dependency graph
involving different variables in LSTMs

Starting with the states at timestep k − 1

ok = σ(Wohk−1 + Uoxk + bo)

For simplicity we will omit the parameters for
now and return back to them later

ik = σ(Wihk−1 + Uixk + bi)

fk = σ(Wfhk−1 + Ufxk + bf )

s̃k = σ(Whk−1 + Uxk + b)

sk = fk � sk−1 + ik � s̃k

hk = ok � σ(sk)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



33/43

sk−1

hk−1

oks̃k fk ik

sk
hk

We will start with the dependency graph
involving different variables in LSTMs

Starting with the states at timestep k − 1

ok = σ(Wohk−1 + Uoxk + bo)

For simplicity we will omit the parameters for
now and return back to them later

ik = σ(Wihk−1 + Uixk + bi)

fk = σ(Wfhk−1 + Ufxk + bf )

s̃k = σ(Whk−1 + Uxk + b)

sk = fk � sk−1 + ik � s̃k
hk = ok � σ(sk)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



34/43

sk−1

hk−1

oks̃k fk ik

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Starting from hk−1 and sk−1 we have reached
hk and sk

And the recursion will now continue till the
last timestep

For simplicity and ease of illustration, instead
of considering the parameters (W , Wo, Wi,
Wf , U , Uo, Ui, Uf ) as separate nodes in
the graph we will just put them on the
appropriate edges. (We show only a few
parameters and not all)

We are now interested in knowing if the
gradient from Lt(θ) flows back to an arbitrary
timestep k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



34/43

sk−1

hk−1

oks̃k fk ik

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Starting from hk−1 and sk−1 we have reached
hk and sk

And the recursion will now continue till the
last timestep

For simplicity and ease of illustration, instead
of considering the parameters (W , Wo, Wi,
Wf , U , Uo, Ui, Uf ) as separate nodes in
the graph we will just put them on the
appropriate edges. (We show only a few
parameters and not all)

We are now interested in knowing if the
gradient from Lt(θ) flows back to an arbitrary
timestep k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



34/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Starting from hk−1 and sk−1 we have reached
hk and sk

And the recursion will now continue till the
last timestep

For simplicity and ease of illustration, instead
of considering the parameters (W , Wo, Wi,
Wf , U , Uo, Ui, Uf ) as separate nodes in
the graph we will just put them on the
appropriate edges. (We show only a few
parameters and not all)

For simplicity and ease of illustration, instead
of considering the parameters (W , Wo, Wi,
Wf , U , Uo, Ui, Uf ) as separate nodes in
the graph we will just put them on the
appropriate edges. (We show only a few
parameters and not all)

We are now interested in knowing if the
gradient from Lt(θ) flows back to an arbitrary
timestep k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



34/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Starting from hk−1 and sk−1 we have reached
hk and sk

And the recursion will now continue till the
last timestep

For simplicity and ease of illustration, instead
of considering the parameters (W , Wo, Wi,
Wf , U , Uo, Ui, Uf ) as separate nodes in
the graph we will just put them on the
appropriate edges. (We show only a few
parameters and not all)

We are now interested in knowing if the
gradient from Lt(θ) flows back to an arbitrary
timestep k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



35/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

For example, we are interested in knowing if
the gradient flows to Wf through sk

In other words, if Lt(θ) was high because Wf

failed to compute an appropriate value for sk
then this information should flow back to Wf

through the gradients

We can ask a similar question about the other
parameters (for example, Wi, Wo, W , etc.)

How does LSTM ensure that this gradient
does not vanish even at arbitrary time steps?
Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



35/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

For example, we are interested in knowing if
the gradient flows to Wf through sk

In other words, if Lt(θ) was high because Wf

failed to compute an appropriate value for sk
then this information should flow back to Wf

through the gradients

We can ask a similar question about the other
parameters (for example, Wi, Wo, W , etc.)

How does LSTM ensure that this gradient
does not vanish even at arbitrary time steps?
Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



35/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

For example, we are interested in knowing if
the gradient flows to Wf through sk

In other words, if Lt(θ) was high because Wf

failed to compute an appropriate value for sk
then this information should flow back to Wf

through the gradients

We can ask a similar question about the other
parameters (for example, Wi, Wo, W , etc.)

How does LSTM ensure that this gradient
does not vanish even at arbitrary time steps?
Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



35/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

For example, we are interested in knowing if
the gradient flows to Wf through sk

In other words, if Lt(θ) was high because Wf

failed to compute an appropriate value for sk
then this information should flow back to Wf

through the gradients

We can ask a similar question about the other
parameters (for example, Wi, Wo, W , etc.)

How does LSTM ensure that this gradient
does not vanish even at arbitrary time steps?
Let us see

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



36/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

It is sufficient to show that ∂Lt(θ)
∂sk

does not
vanish (because if this does not vanish we can
reach Wf through sk)

First, we observe that there are multiple paths
from Lt(θ) to sk (you just need to reverse the
direction of the arrows for backpropagation)

For example, there is one path through sk+1,
another through hk

Further, there are multiple paths to reach
to hk itself (as should be obvious from the
number of outgoing arrows from hk)

So at this point just convince yourself that
there are many paths from Lt(θ) to sk

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



36/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

It is sufficient to show that ∂Lt(θ)
∂sk

does not
vanish (because if this does not vanish we can
reach Wf through sk)

First, we observe that there are multiple paths
from Lt(θ) to sk (you just need to reverse the
direction of the arrows for backpropagation)

For example, there is one path through sk+1,
another through hk

Further, there are multiple paths to reach
to hk itself (as should be obvious from the
number of outgoing arrows from hk)

So at this point just convince yourself that
there are many paths from Lt(θ) to sk

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



36/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

It is sufficient to show that ∂Lt(θ)
∂sk

does not
vanish (because if this does not vanish we can
reach Wf through sk)

First, we observe that there are multiple paths
from Lt(θ) to sk (you just need to reverse the
direction of the arrows for backpropagation)

For example, there is one path through sk+1,
another through hk

Further, there are multiple paths to reach
to hk itself (as should be obvious from the
number of outgoing arrows from hk)

So at this point just convince yourself that
there are many paths from Lt(θ) to sk

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



36/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

It is sufficient to show that ∂Lt(θ)
∂sk

does not
vanish (because if this does not vanish we can
reach Wf through sk)

First, we observe that there are multiple paths
from Lt(θ) to sk (you just need to reverse the
direction of the arrows for backpropagation)

For example, there is one path through sk+1,
another through hk

Further, there are multiple paths to reach
to hk itself (as should be obvious from the
number of outgoing arrows from hk)

So at this point just convince yourself that
there are many paths from Lt(θ) to sk

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



36/43

sk−1

hk−1

ok

Wo

s̃k fk ik

WiWf

W

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

It is sufficient to show that ∂Lt(θ)
∂sk

does not
vanish (because if this does not vanish we can
reach Wf through sk)

First, we observe that there are multiple paths
from Lt(θ) to sk (you just need to reverse the
direction of the arrows for backpropagation)

For example, there is one path through sk+1,
another through hk

Further, there are multiple paths to reach
to hk itself (as should be obvious from the
number of outgoing arrows from hk)

So at this point just convince yourself that
there are many paths from Lt(θ) to sk

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



37/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Consider one such path (highlighted) which
will contribute to the gradient

Let us denote the gradient along this path as
t0

t0 =
∂Lt(θ)

∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

The first term ∂Lt(θ)
∂ht

is fine and it doesn’t
vanish (ht is directly connected to Lt(θ) and
there are no intermediate nodes which can
cause the gradient to vanish)
We will now look at the other terms
∂ht
∂st

∂st
∂st−1

(∀t)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



37/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Consider one such path (highlighted) which
will contribute to the gradient
Let us denote the gradient along this path as
t0

t0 =
∂Lt(θ)

∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

The first term ∂Lt(θ)
∂ht

is fine and it doesn’t
vanish (ht is directly connected to Lt(θ) and
there are no intermediate nodes which can
cause the gradient to vanish)
We will now look at the other terms
∂ht
∂st

∂st
∂st−1

(∀t)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



37/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Consider one such path (highlighted) which
will contribute to the gradient
Let us denote the gradient along this path as
t0

t0 =
∂Lt(θ)

∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

The first term ∂Lt(θ)
∂ht

is fine and it doesn’t
vanish (ht is directly connected to Lt(θ) and
there are no intermediate nodes which can
cause the gradient to vanish)
We will now look at the other terms
∂ht
∂st

∂st
∂st−1

(∀t)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



37/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Consider one such path (highlighted) which
will contribute to the gradient
Let us denote the gradient along this path as
t0

t0 =
∂Lt(θ)

∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

The first term ∂Lt(θ)
∂ht

is fine and it doesn’t
vanish (ht is directly connected to Lt(θ) and
there are no intermediate nodes which can
cause the gradient to vanish)

We will now look at the other terms
∂ht
∂st

∂st
∂st−1

(∀t)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



37/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Consider one such path (highlighted) which
will contribute to the gradient
Let us denote the gradient along this path as
t0

t0 =
∂Lt(θ)

∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

The first term ∂Lt(θ)
∂ht

is fine and it doesn’t
vanish (ht is directly connected to Lt(θ) and
there are no intermediate nodes which can
cause the gradient to vanish)
We will now look at the other terms
∂ht
∂st

∂st
∂st−1

(∀t)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



38/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Let us first look at ∂ht
∂st

Recall that

ht = ot � σ(st)

Note that hti only depends on oti and sti and
not on any other elements of ot and st
∂ht
∂st

will thus be a square diagonal matrix

∈ Rd×d whose diagonal will be
ot � σ′(st) ∈ Rd (see slide 35 of Lecture 14)
We will represent this diagonal matrix by
D(ot � σ′(st))

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



38/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Let us first look at ∂ht
∂st

Recall that

ht = ot � σ(st)

Note that hti only depends on oti and sti and
not on any other elements of ot and st
∂ht
∂st

will thus be a square diagonal matrix

∈ Rd×d whose diagonal will be
ot � σ′(st) ∈ Rd (see slide 35 of Lecture 14)
We will represent this diagonal matrix by
D(ot � σ′(st))

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



38/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Let us first look at ∂ht
∂st

Recall that

ht = ot � σ(st)

Note that hti only depends on oti and sti and
not on any other elements of ot and st

∂ht
∂st

will thus be a square diagonal matrix

∈ Rd×d whose diagonal will be
ot � σ′(st) ∈ Rd (see slide 35 of Lecture 14)
We will represent this diagonal matrix by
D(ot � σ′(st))

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



38/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Let us first look at ∂ht
∂st

Recall that

ht = ot � σ(st)

Note that hti only depends on oti and sti and
not on any other elements of ot and st
∂ht
∂st

will thus be a square diagonal matrix

∈ Rd×d whose diagonal will be
ot � σ′(st) ∈ Rd (see slide 35 of Lecture 14)

We will represent this diagonal matrix by
D(ot � σ′(st))

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



38/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Let us first look at ∂ht
∂st

Recall that

ht = ot � σ(st)

Note that hti only depends on oti and sti and
not on any other elements of ot and st
∂ht
∂st

will thus be a square diagonal matrix

∈ Rd×d whose diagonal will be
ot � σ′(st) ∈ Rd (see slide 35 of Lecture 14)
We will represent this diagonal matrix by
D(ot � σ′(st))

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



39/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now let us consider ∂st
∂st−1

Recall that

st = ft � st−1 + it � s̃t

Notice that s̃t also depends on st−1 so we
cannot treat it as a constant
So once again we are dealing with an ordered
network and thus ∂st

∂st−1
will be a sum of an

explicit term and an implicit term (see slide
37 from Lecture 14)
For simplicity, let us assume that the gradient
from the implicit term vanishes (we are
assuming a worst case scenario)
And the gradient from the explicit term
(treating s̃t as a constant) is given by D(ft)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



39/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now let us consider ∂st
∂st−1

Recall that

st = ft � st−1 + it � s̃t

Notice that s̃t also depends on st−1 so we
cannot treat it as a constant
So once again we are dealing with an ordered
network and thus ∂st

∂st−1
will be a sum of an

explicit term and an implicit term (see slide
37 from Lecture 14)
For simplicity, let us assume that the gradient
from the implicit term vanishes (we are
assuming a worst case scenario)
And the gradient from the explicit term
(treating s̃t as a constant) is given by D(ft)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



39/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now let us consider ∂st
∂st−1

Recall that

st = ft � st−1 + it � s̃t

Notice that s̃t also depends on st−1 so we
cannot treat it as a constant

So once again we are dealing with an ordered
network and thus ∂st

∂st−1
will be a sum of an

explicit term and an implicit term (see slide
37 from Lecture 14)
For simplicity, let us assume that the gradient
from the implicit term vanishes (we are
assuming a worst case scenario)
And the gradient from the explicit term
(treating s̃t as a constant) is given by D(ft)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



39/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now let us consider ∂st
∂st−1

Recall that

st = ft � st−1 + it � s̃t

Notice that s̃t also depends on st−1 so we
cannot treat it as a constant
So once again we are dealing with an ordered
network and thus ∂st

∂st−1
will be a sum of an

explicit term and an implicit term (see slide
37 from Lecture 14)

For simplicity, let us assume that the gradient
from the implicit term vanishes (we are
assuming a worst case scenario)
And the gradient from the explicit term
(treating s̃t as a constant) is given by D(ft)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



39/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now let us consider ∂st
∂st−1

Recall that

st = ft � st−1 + it � s̃t

Notice that s̃t also depends on st−1 so we
cannot treat it as a constant
So once again we are dealing with an ordered
network and thus ∂st

∂st−1
will be a sum of an

explicit term and an implicit term (see slide
37 from Lecture 14)
For simplicity, let us assume that the gradient
from the implicit term vanishes (we are
assuming a worst case scenario)

And the gradient from the explicit term
(treating s̃t as a constant) is given by D(ft)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



39/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now let us consider ∂st
∂st−1

Recall that

st = ft � st−1 + it � s̃t

Notice that s̃t also depends on st−1 so we
cannot treat it as a constant
So once again we are dealing with an ordered
network and thus ∂st

∂st−1
will be a sum of an

explicit term and an implicit term (see slide
37 from Lecture 14)
For simplicity, let us assume that the gradient
from the implicit term vanishes (we are
assuming a worst case scenario)
And the gradient from the explicit term
(treating s̃t as a constant) is given by D(ft)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



40/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

We now return back to our full expression for
t0:

t0 =
∂Lt(θ)
∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

= L′t(ht).D(ot � σ′(st))D(ft) . . .D(fk+1)

= L′t(ht).D(ot � σ′(st))D(ft � . . .� fk+1)

= L′t(ht).D(ot � σ′(st))D(�ti=k+1fi)

The red terms don’t vanish and the blue terms
contain a multiplication of the forget gates
The forget gates thus regulate the gradient
flow depending on the explicit contribution of
a state (st) to the next state st+1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



40/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

We now return back to our full expression for
t0:

t0 =
∂Lt(θ)
∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

= L′t(ht).D(ot � σ′(st))D(ft) . . .D(fk+1)

= L′t(ht).D(ot � σ′(st))D(ft � . . .� fk+1)

= L′t(ht).D(ot � σ′(st))D(�ti=k+1fi)

The red terms don’t vanish and the blue terms
contain a multiplication of the forget gates
The forget gates thus regulate the gradient
flow depending on the explicit contribution of
a state (st) to the next state st+1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



40/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

We now return back to our full expression for
t0:

t0 =
∂Lt(θ)
∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

= L′t(ht).D(ot � σ′(st))D(ft) . . .D(fk+1)

= L′t(ht).D(ot � σ′(st))D(ft � . . .� fk+1)

= L′t(ht).D(ot � σ′(st))D(�ti=k+1fi)

The red terms don’t vanish and the blue terms
contain a multiplication of the forget gates
The forget gates thus regulate the gradient
flow depending on the explicit contribution of
a state (st) to the next state st+1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



40/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

We now return back to our full expression for
t0:

t0 =
∂Lt(θ)
∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

= L′t(ht).D(ot � σ′(st))D(ft) . . .D(fk+1)

= L′t(ht).D(ot � σ′(st))D(ft � . . .� fk+1)

= L′t(ht).D(ot � σ′(st))D(�ti=k+1fi)

The red terms don’t vanish and the blue terms
contain a multiplication of the forget gates
The forget gates thus regulate the gradient
flow depending on the explicit contribution of
a state (st) to the next state st+1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



40/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

We now return back to our full expression for
t0:

t0 =
∂Lt(θ)
∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

= L′t(ht).D(ot � σ′(st))D(ft) . . .D(fk+1)

= L′t(ht).D(ot � σ′(st))D(ft � . . .� fk+1)

= L′t(ht).D(ot � σ′(st))D(�ti=k+1fi)

The red terms don’t vanish and the blue terms
contain a multiplication of the forget gates
The forget gates thus regulate the gradient
flow depending on the explicit contribution of
a state (st) to the next state st+1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



40/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

We now return back to our full expression for
t0:

t0 =
∂Lt(θ)
∂ht

∂ht
∂st

∂st
∂st−1

. . .
∂sk+1

∂sk

= L′t(ht).D(ot � σ′(st))D(ft) . . .D(fk+1)

= L′t(ht).D(ot � σ′(st))D(ft � . . .� fk+1)

= L′t(ht).D(ot � σ′(st))D(�ti=k+1fi)

The red terms don’t vanish and the blue terms
contain a multiplication of the forget gates
The forget gates thus regulate the gradient
flow depending on the explicit contribution of
a state (st) to the next state st+1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



41/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

If during forward pass st did not contribute
much to st+1 (because ft → 0) then during
backpropgation also the gradient will not
reach st

This is fine because if st did not contribute
much to st+1 then there is no reason to hold
it responsible during backpropgation

(ft does
the same regulation during forward pass and
backward pass which is fair)

Thus there exists this one path along which
the gradient doesn’t vanish when it shouldn’t
And as argued as long as the gradient flows
back to Wf through one of the paths (t0)
through sk we are fine !
Of course the gradient flows back only when
required as regulated by fi’s (but let me just
say it one last time that this is fair)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



41/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

If during forward pass st did not contribute
much to st+1 (because ft → 0) then during
backpropgation also the gradient will not
reach st
This is fine because if st did not contribute
much to st+1 then there is no reason to hold
it responsible during backpropgation

(ft does
the same regulation during forward pass and
backward pass which is fair)
Thus there exists this one path along which
the gradient doesn’t vanish when it shouldn’t
And as argued as long as the gradient flows
back to Wf through one of the paths (t0)
through sk we are fine !
Of course the gradient flows back only when
required as regulated by fi’s (but let me just
say it one last time that this is fair)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



41/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

If during forward pass st did not contribute
much to st+1 (because ft → 0) then during
backpropgation also the gradient will not
reach st
This is fine because if st did not contribute
much to st+1 then there is no reason to hold
it responsible during backpropgation (ft does
the same regulation during forward pass and
backward pass which is fair)

Thus there exists this one path along which
the gradient doesn’t vanish when it shouldn’t
And as argued as long as the gradient flows
back to Wf through one of the paths (t0)
through sk we are fine !
Of course the gradient flows back only when
required as regulated by fi’s (but let me just
say it one last time that this is fair)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



41/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

If during forward pass st did not contribute
much to st+1 (because ft → 0) then during
backpropgation also the gradient will not
reach st
This is fine because if st did not contribute
much to st+1 then there is no reason to hold
it responsible during backpropgation (ft does
the same regulation during forward pass and
backward pass which is fair)
Thus there exists this one path along which
the gradient doesn’t vanish when it shouldn’t

And as argued as long as the gradient flows
back to Wf through one of the paths (t0)
through sk we are fine !
Of course the gradient flows back only when
required as regulated by fi’s (but let me just
say it one last time that this is fair)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



41/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

If during forward pass st did not contribute
much to st+1 (because ft → 0) then during
backpropgation also the gradient will not
reach st
This is fine because if st did not contribute
much to st+1 then there is no reason to hold
it responsible during backpropgation (ft does
the same regulation during forward pass and
backward pass which is fair)
Thus there exists this one path along which
the gradient doesn’t vanish when it shouldn’t
And as argued as long as the gradient flows
back to Wf through one of the paths (t0)
through sk we are fine !

Of course the gradient flows back only when
required as regulated by fi’s (but let me just
say it one last time that this is fair)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



41/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

If during forward pass st did not contribute
much to st+1 (because ft → 0) then during
backpropgation also the gradient will not
reach st
This is fine because if st did not contribute
much to st+1 then there is no reason to hold
it responsible during backpropgation (ft does
the same regulation during forward pass and
backward pass which is fair)
Thus there exists this one path along which
the gradient doesn’t vanish when it shouldn’t
And as argued as long as the gradient flows
back to Wf through one of the paths (t0)
through sk we are fine !
Of course the gradient flows back only when
required as regulated by fi’s (but let me just
say it one last time that this is fair)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



42/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now we will see why LSTMs do not solve the
problem of exploding gradients

We will show a path through which the
gradient can explode

Let us compute one term (say t1) of ∂Lt(θ)
∂hk−1

corresponding to the highlighted path

t1 =
∂Lt(θ)

∂ht

(
∂ht
∂ot

∂ot
∂ht−1

)
. . .

(
∂hk
∂ok

∂ok
∂hk−1

)
=L′t(ht) (D(σ(st)� o′t).Wo) . . .

(D(σ(sk)� o′k).Wo)

‖t1‖ ≤‖L′t(ht)‖ (‖K‖‖Wo‖)t−k+1

Depending on the norm of matrix Wo, the
gradient ∂Lt(θ)

∂hk−1
may explode

Similarly, Wi, Wf and W can also cause the
gradients to explode

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



42/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now we will see why LSTMs do not solve the
problem of exploding gradients

We will show a path through which the
gradient can explode

Let us compute one term (say t1) of ∂Lt(θ)
∂hk−1

corresponding to the highlighted path

t1 =
∂Lt(θ)

∂ht

(
∂ht
∂ot

∂ot
∂ht−1

)
. . .

(
∂hk
∂ok

∂ok
∂hk−1

)
=L′t(ht) (D(σ(st)� o′t).Wo) . . .

(D(σ(sk)� o′k).Wo)

‖t1‖ ≤‖L′t(ht)‖ (‖K‖‖Wo‖)t−k+1

Depending on the norm of matrix Wo, the
gradient ∂Lt(θ)

∂hk−1
may explode

Similarly, Wi, Wf and W can also cause the
gradients to explode

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



42/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now we will see why LSTMs do not solve the
problem of exploding gradients

We will show a path through which the
gradient can explode

Let us compute one term (say t1) of ∂Lt(θ)
∂hk−1

corresponding to the highlighted path

t1 =
∂Lt(θ)

∂ht

(
∂ht
∂ot

∂ot
∂ht−1

)
. . .

(
∂hk
∂ok

∂ok
∂hk−1

)
=L′t(ht) (D(σ(st)� o′t).Wo) . . .

(D(σ(sk)� o′k).Wo)

‖t1‖ ≤‖L′t(ht)‖ (‖K‖‖Wo‖)t−k+1

Depending on the norm of matrix Wo, the
gradient ∂Lt(θ)

∂hk−1
may explode

Similarly, Wi, Wf and W can also cause the
gradients to explode

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



42/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now we will see why LSTMs do not solve the
problem of exploding gradients

We will show a path through which the
gradient can explode

Let us compute one term (say t1) of ∂Lt(θ)
∂hk−1

corresponding to the highlighted path

t1 =
∂Lt(θ)

∂ht

(
∂ht
∂ot

∂ot
∂ht−1

)
. . .

(
∂hk
∂ok

∂ok
∂hk−1

)

=L′t(ht) (D(σ(st)� o′t).Wo) . . .

(D(σ(sk)� o′k).Wo)

‖t1‖ ≤‖L′t(ht)‖ (‖K‖‖Wo‖)t−k+1

Depending on the norm of matrix Wo, the
gradient ∂Lt(θ)

∂hk−1
may explode

Similarly, Wi, Wf and W can also cause the
gradients to explode

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



42/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now we will see why LSTMs do not solve the
problem of exploding gradients

We will show a path through which the
gradient can explode

Let us compute one term (say t1) of ∂Lt(θ)
∂hk−1

corresponding to the highlighted path

t1 =
∂Lt(θ)

∂ht

(
∂ht
∂ot

∂ot
∂ht−1

)
. . .

(
∂hk
∂ok

∂ok
∂hk−1

)
=L′t(ht) (D(σ(st)� o′t).Wo) . . .

(D(σ(sk)� o′k).Wo)

‖t1‖ ≤‖L′t(ht)‖ (‖K‖‖Wo‖)t−k+1

Depending on the norm of matrix Wo, the
gradient ∂Lt(θ)

∂hk−1
may explode

Similarly, Wi, Wf and W can also cause the
gradients to explode

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



42/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now we will see why LSTMs do not solve the
problem of exploding gradients

We will show a path through which the
gradient can explode

Let us compute one term (say t1) of ∂Lt(θ)
∂hk−1

corresponding to the highlighted path

t1 =
∂Lt(θ)

∂ht

(
∂ht
∂ot

∂ot
∂ht−1

)
. . .

(
∂hk
∂ok

∂ok
∂hk−1

)
=L′t(ht) (D(σ(st)� o′t).Wo) . . .

(D(σ(sk)� o′k).Wo)

‖t1‖ ≤‖L′t(ht)‖ (‖K‖‖Wo‖)t−k+1

Depending on the norm of matrix Wo, the
gradient ∂Lt(θ)

∂hk−1
may explode

Similarly, Wi, Wf and W can also cause the
gradients to explode

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



42/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now we will see why LSTMs do not solve the
problem of exploding gradients

We will show a path through which the
gradient can explode

Let us compute one term (say t1) of ∂Lt(θ)
∂hk−1

corresponding to the highlighted path

t1 =
∂Lt(θ)

∂ht

(
∂ht
∂ot

∂ot
∂ht−1

)
. . .

(
∂hk
∂ok

∂ok
∂hk−1

)
=L′t(ht) (D(σ(st)� o′t).Wo) . . .

(D(σ(sk)� o′k).Wo)

‖t1‖ ≤‖L′t(ht)‖ (‖K‖‖Wo‖)t−k+1

Depending on the norm of matrix Wo, the
gradient ∂Lt(θ)

∂hk−1
may explode

Similarly, Wi, Wf and W can also cause the
gradients to explode

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



42/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

Now we will see why LSTMs do not solve the
problem of exploding gradients

We will show a path through which the
gradient can explode

Let us compute one term (say t1) of ∂Lt(θ)
∂hk−1

corresponding to the highlighted path

t1 =
∂Lt(θ)

∂ht

(
∂ht
∂ot

∂ot
∂ht−1

)
. . .

(
∂hk
∂ok

∂ok
∂hk−1

)
=L′t(ht) (D(σ(st)� o′t).Wo) . . .

(D(σ(sk)� o′k).Wo)

‖t1‖ ≤‖L′t(ht)‖ (‖K‖‖Wo‖)t−k+1

Depending on the norm of matrix Wo, the
gradient ∂Lt(θ)

∂hk−1
may explode

Similarly, Wi, Wf and W can also cause the
gradients to explode

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



43/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

So how do we deal with the problem of
exploding gradients ?

One popular trick is to use gradient clipping

While backpropagating if the norm of the
gradient exceeds a certain value, it is scaled to
keep its norm within an acceptable threshold∗

Essentially we retain the direction of the
gradient but scale down the norm

∗Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio.
“On the difficulty of training recurrent neural networks.”
ICML(3)28(2013):1310-1318

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



43/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

So how do we deal with the problem of
exploding gradients ?

One popular trick is to use gradient clipping

While backpropagating if the norm of the
gradient exceeds a certain value, it is scaled to
keep its norm within an acceptable threshold∗

Essentially we retain the direction of the
gradient but scale down the norm

∗Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio.
“On the difficulty of training recurrent neural networks.”
ICML(3)28(2013):1310-1318

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



43/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

So how do we deal with the problem of
exploding gradients ?

One popular trick is to use gradient clipping

While backpropagating if the norm of the
gradient exceeds a certain value, it is scaled to
keep its norm within an acceptable threshold∗

Essentially we retain the direction of the
gradient but scale down the norm

∗Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio.
“On the difficulty of training recurrent neural networks.”
ICML(3)28(2013):1310-1318

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15



43/43

sk−1

hk−1

s̃k fk ik ok

sk
hk

st−1

ht−1

s̃t ft it ot

st

ht Lt(θ)

So how do we deal with the problem of
exploding gradients ?

One popular trick is to use gradient clipping

While backpropagating if the norm of the
gradient exceeds a certain value, it is scaled to
keep its norm within an acceptable threshold∗

Essentially we retain the direction of the
gradient but scale down the norm

∗Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio.
“On the difficulty of training recurrent neural networks.”
ICML(3)28(2013):1310-1318

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 15


