Module 18.2: Factors in Markov Network

$$P(G,S,I,L,D) = P(I)P(D)P(G|I,D)P(S|I)P(L|G)$$

 Recall that in the directed case the factors were Conditional Probability Distributions (CPDs)

$$P(G,S,I,L,D) = P(I)P(D)P(G|I,D)P(S|I)P(L|G)$$

- Recall that in the directed case the factors were Conditional Probability Distributions (CPDs)
- Each such factor captured interaction (dependence) between the connected nodes

$$P(G,S,I,L,D) = P(I)P(D)P(G|I,D)P(S|I)P(L|G)$$

- Recall that in the directed case the factors were Conditional Probability Distributions (CPDs)
- Each such factor captured interaction (dependence) between the connected nodes
- Can we use CPDs in the undirected case also?

$$P(G,S,I,L,D) = P(I)P(D)P(G|I,D)P(S|I)P(L|G)$$

- Recall that in the directed case the factors were Conditional Probability Distributions (CPDs)
- Each such factor captured interaction (dependence) between the connected nodes
- Can we use CPDs in the undirected case also?
- CPDs don't make sense in the undirected case because there is no direction and hence no natural conditioning (Is A|B or B|A?)

• So what should be the factors or parameters in this case

- So what should be the factors or parameters in this case
- Question: What do we want these factors to capture?

- So what should be the factors or parameters in this case
- Question: What do we want these factors to capture?
- **Answer:** The affinity between connected random variables

- So what should be the factors or parameters in this case
- Question: What do we want these factors to capture?
- **Answer:** The affinity between connected random variables
- Just as in the directed case the factors captured the conditional dependence between a set of random variables, here we want them to capture the affinity between them

• However we can borrow the intuition from the directed case.

- However we can borrow the intuition from the directed case.
- Even in the undirected case, we want each such factor to capture interactions (affinity) between connected nodes

- However we can borrow the intuition from the directed case.
- Even in the undirected case, we want each such factor to capture interactions (affinity) between connected nodes
- We could have factors $\phi_1(A, B)$, $\phi_2(B, C)$, $\phi_3(C, D)$, $\phi_4(D, A)$ which capture the affinity between the corresponding nodes.

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D, A)$
$a^{0} b^{0}$	a^{0} b^{0}	a^{0} b^{0}	a^{0} b^{0}
$a^0 b^1$	a^{0} b^{1}	a^{0} b^{1}	$a^0 b^1$
$a^1 b^0$	a^{1} b^{0}	$a^1 b^0$	a^{1} b^{0}
a^1 b^1	a^1 b^1	a^1 b^1	a^1 b^1

• Intuitively, it makes sense to have these factors associated with each pair of connected random variables.

$\phi_1(A, I)$	3)	$\phi_2(B$	(C)	($\phi_3(C$,D)	($\phi_4(D$,A)
$a^0 - b^0 - 3$	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
$a^0 b^1 5$	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
$a^1 b^0 1$	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
$a^1 b^1 1$	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors

	$\phi_1(A$	(B)		$\phi_2(B$	(C, C)		$\phi_3(C$	(,D)		$\phi_4(D$	(A)
a^0	b^0	30	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
a^0	b^1	5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
a^1	b^0	1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1	b^1	10	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

• But who will give us these values?

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors

	$\phi_1(A$	(B)		$\phi_2(B$	(C, C)		$\phi_3(C$	(,D)		$\phi_4(D$	(A)
a^0	b^0	30	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
a^0	b^1	5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
a^1	b^0	1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1	b^1	10	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

- But who will give us these values?
- Well now you need to learn them from data (same as in the directed case)

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors

	$\phi_1(A$		($\phi_2(B$	(C)		$\phi_3(C$	(D)		$\phi_4(D$	
a^0	b^0	30	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
a^0	b^1	5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
a^1	b^0	1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1	b^1	10	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

- But who will give us these values?
- Well now you need to learn them from data (same as in the directed case)
- If you have access to a lot of past interactions between A&B then you could learn these values(more on this later)

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 b^1 10$	$a^1 b^1 100$	$a^1 b^1 1$	$a^1 b^1 100$

- But who will give us these values?
- Well now you need to learn them from data (same as in the directed case)
- If you have access to a lot of past interactions between A&B then you could learn these values(more on this later)

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors
- Roughly speaking $\phi_1(A, B)$ asserts that it is more likely for A and B to agree [: weights for $a^0b^0, a^1b^1 > a^0b^1, a^1b^0$]

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 b^1 10$	$a^1 b^1 100$	$a^1 b^1 1$	$a^1 b^1 100$

- But who will give us these values?
- Well now you need to learn them from data (same as in the directed case)
- If you have access to a lot of past interactions between A&B then you could learn these values(more on this later)

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors
- Roughly speaking $\phi_1(A, B)$ asserts that it is more likely for A and B to agree [: weights for $a^0b^0, a^1b^1 > a^0b^1, a^1b^0$]
- $\phi_1(A, B)$ also assigns more weight to the case when both do not have a misconception as compared to the case when both have the misconception $a^0b^0 > a^1b^1$

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 b^1 10$	$a^1 b^1 100$	$a^1 b^1 1$	$a^1 b^1 100$

- But who will give us these values?
- Well now you need to learn them from data (same as in the directed case)
- If you have access to a lot of past interactions between A&B then you could learn these values (more on this later)

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors
- Roughly speaking $\phi_1(A, B)$ asserts that it is more likely for A and B to agree [: weights for $a^0b^0, a^1b^1 > a^0b^1, a^1b^0$]
- $\phi_1(A, B)$ also assigns more weight to the case when both do not have a misconception as compared to the case when both have the misconception $a^0b^0 > a^1b^1$
- We could have similar assignments for the other factors

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0 30$	$a^0 b^0 100$	a^{0} b^{0} 1	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 a^1 10$	$a^1 b^1 100$	$a^1 b^1 1$	$a^1 b^1 100$

• Notice a few things

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D, A)$
$a^0 b^0 30$	$a^0 b^0 100$	a^{0} b^{0} 1	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 a^1 10$	$a^1 b^1 100$	$a^1 b^1 1$	$a^1 b^1 100$

- Notice a few things
- These tables do not represent probability distributions

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D, A)$
$a^0 b^0 30$	$a^0 b^0 100$	a^{0} b^{0} 1	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 a^1 10$	$a^1 b^1 100$	$a^1 b^1 1$	$a^1 b^1 100$

- \bullet Notice a few things
- These tables do not represent probability distributions
- They are just weights which can be interpreted as the relative likelihood of an event

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0 30$	$a^0 b^0 100$	a^{0} b^{0} 1	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 a^1 10$	$a^1 b^1 100$	a^1 b^1 1	$a^1 b^1 100$

- Notice a few things
- These tables do not represent probability distributions
- They are just weights which can be interpreted as the relative likelihood of an event
- For example, a = 0, b = 0 is more likely than a = 1, b = 1

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D, A)$
$a^0 b^0 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 a^1 10$	$a^1 b^1 100$	$a^1 \ b^1 \ 1$	$a^1 b^1 100$

• But eventually we are interested in probability distributions

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0 30$	$a^0 b^0 100$	a^{0} b^{0} 1	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 a^1 10$	$a^1 b^1 100$	$a^1 b^1 1$	$a^1 b^1 100$

- But eventually we are interested in probability distributions
- In the directed case going from factors to a joint probability distribution was easy as the factors were themselves conditional probability distributions

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0 30$	$a^0 b^0 100$	a^{0} b^{0} 1	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 a^1 10$	$a^1 b^1 100$	a^1 b^1 1	$a^1 b^1 100$

- But eventually we are interested in probability distributions
- In the directed case going from factors to a joint probability distribution was easy as the factors were themselves conditional probability distributions
- We could just write the joint probability distribution as the product of the factors (without violating the axioms of probability)

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0 30$	$a^0 b^0 100$	a^{0} b^{0} 1	$a^0 b^0 100$
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 b^1 1$
$a^1 b^0 1$	$a^1 b^0 1$	$a^1 b^1 100$	$a^1 b^0 1$
$a^1 a^1 10$	$a^1 b^1 100$	a^1 b^1 1	$a^1 b^1 100$

- But eventually we are interested in probability distributions
- In the directed case going from factors to a joint probability distribution was easy as the factors were themselves conditional probability distributions
- We could just write the joint probability distribution as the product of the factors (without violating the axioms of probability)
- What do we do in this case when the factors are not probability distributions

\boldsymbol{A}	ssig	nme	nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

A	ssig	nme	nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

\boldsymbol{A}	ssig	nme	nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

$$P(a,b,c,d) = \frac{1}{Z}\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$$

\boldsymbol{A}	ssig	nme	nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$$

• Based on the values that we had assigned to the factors we can now compute the full joint probability distribution

\boldsymbol{A}	ssig	nme	nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$$

- Based on the values that we had assigned to the factors we can now compute the full joint probability distribution
- Z is called the partition function.

• Let us build on the original example by adding some more students

• Let us build on the original example by adding some more students

- Let us build on the original example by adding some more students
- Once again there is an edge between two students if they study together

- Let us build on the original example by adding some more students
- Once again there is an edge between two students if they study together
- One way of interpreting these new connections is that $\{A, D, E\}$ from a study group or a clique

- Let us build on the original example by adding some more students
- Once again there is an edge between two students if they study together
- One way of interpreting these new connections is that $\{A, D, E\}$ from a study group or a clique
- Similarly $\{A, F, B\}$ form a study group and $\{C, D\}$ form a study group and $\{B, C\}$ form a study group

• Now, what should the factors be?

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions

$$\phi_1(A, E)\phi_2(A, F)\phi_3(B, F)\phi_4(A, B)$$

 $\phi_5(A, D)\phi_6(D, E)\phi_7(B, C)\phi_8(C, D)$

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions

$$\phi_1(A, E)\phi_2(A, F)\phi_3(B, F)\phi_4(A, B)$$

 $\phi_5(A, D)\phi_6(D, E)\phi_7(B, C)\phi_8(C, D)$

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions
- But could we do something smarter (and more efficient)

$$\phi_1(A, E)\phi_2(A, F)\phi_3(B, F)\phi_4(A, B)$$

 $\phi_5(A, D)\phi_6(D, E)\phi_7(B, C)\phi_8(C, D)$

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions
- But could we do something smarter (and more efficient)
- Instead of having a factor for each pair of nodes why not have it for each maximal clique?

$$\phi_1(A, E)\phi_2(A, F)\phi_3(B, F)\phi_4(A, B)$$

 $\phi_5(A, D)\phi_6(D, E)\phi_7(B, C)\phi_8(C, D)$

$$\phi_1(A, E, D)\phi_2(A, F, B)\phi_3(B, C)\phi_4(C, D)$$

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions
- But could we do something smarter (and more efficient)
- Instead of having a factor for each pair of nodes why not have it for each maximal clique?

• What if we add one more student?

• What if we add one more student?

- What if we add one more student?
- What will be the factors in this case?

- What if we add one more student?
- What will be the factors in this case?
- Remember, we are interested in maximal cliques

- What if we add one more student?
- What will be the factors in this case?
- Remember, we are interested in maximal cliques
- So instead of having factors $\phi(EAG)$ $\phi(GAD)$ $\phi(EGD)$ we will have a single factor $\phi(AEGD)$ corresponding to the maximal clique

• A distribution P factorizes over a Bayesian Network G if P can be expressed as

$$P(X_1,...,X_n) = \prod_{i=1}^{n} P(X_i|P_{a_{X_i}})$$

• A distribution P factorizes over a Bayesian Network G if P can be expressed as

$$P(X_1,...,X_n) = \prod_{i=1}^{n} P(X_i|P_{a_{X_i}})$$

 A distribution P factorizes over a Bayesian Network G if P can be expressed as

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|P_{a_{X_i}})$$

 A distribution factorizes over a Markov Network H if P can be expressed as

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi(D_i)$$

where each D_i is a complete sub-graph (maximal clique) in H

 A distribution P factorizes over a Bayesian Network G if P can be expressed as

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | P_{a_{X_i}})$$

ullet A distribution factorizes over a Markov Network H if P can be expressed as

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi(D_i)$$

where each D_i is a complete sub-graph (maximal clique) in H

A distribution is a Gibbs distribution parametrized by a set of factors $\Phi = \{\phi_1(D_1), \dots, \phi_m(D_m)\}$ if it is defined as

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(D_i)$$