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Module 18.2: Factors in Markov Network
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Grade SAT

Intellligence

Letter

Difficulty

P (G,S, I, L,D) =

P (I)P (D)P (G|I,D)P (S|I)P (L|G)

Recall that in the directed case the
factors were Conditional Probability
Distributions (CPDs)

Each such factor captured interaction
(dependence) between the connected
nodes

Can we use CPDs in the undirected
case also ?

CPDs don’t make sense in the undir-
ected case because there is no direc-
tion and hence no natural condition-
ing (Is A|B or B|A?)
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D B

A

C

So what should be the factors or para-
meters in this case

Question: What do we want these
factors to capture ?

Answer: The affinity between con-
nected random variables

Just as in the directed case the factors
captured the conditional dependence
between a set of random variables,
here we want them to capture the af-
finity between them
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D B

A

C

However we can borrow the intuition
from the directed case.

Even in the undirected case, we want
each such factor to capture inter-
actions (affinity) between connected
nodes

We could have factors φ1(A,B),
φ2(B,C), φ3(C,D), φ4(D,A) which
capture the affinity between the cor-
responding nodes.
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D B

A

C

φ1(A,B) φ2(B,C) φ3(C,D) φ4(D,A)

a0 b0 a0 b0 a0 b0 a0 b0

a0 b1 a0 b1 a0 b1 a0 b1

a1 b0 a1 b0 a1 b0 a1 b0

a1 b1 a1 b1 a1 b1 a1 b1

But who will give us these values ?

Well now you need to learn them from data
(same as in the directed case)

If you have access to a lot of past interac-
tions between A&B then you could learn
these values(more on this later)

Intuitively, it makes sense to have
these factors associated with each
pair of connected random variables.

We could now assign some values of
these factors

Roughly speaking φ1(A,B) asserts
that it is more likely for A and B
to agree [∵ weights for a0b0, a1b1 >
a0b1, a1b0]

φ1(A,B) also assigns more weight to
the case when both do not have a mis-
conception as compared to the case
when both have the misconception
a0b0 > a1b1

We could have similar assignments for
the other factors
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D B

A

C

φ1(A,B) φ2(B,C) φ3(C,D) φ4(D,A)

a0 b0 30 a0 b0 100 a0 b0 1 a0 b0 100
a0 b1 5 a0 b1 1 a0 b0 100 a0 b1 1
a1 b0 1 a1 b0 1 a1 b1 100 a1 b0 1
a1 b1 10 a1 b1 100 a1 b1 1 a1 b1 100
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D B
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C

φ1(A,B) φ2(B,C) φ3(C,D) φ4(D,A)

a0 b0 30 a0 b0 100 a0 b0 1 a0 b0 100
a0 b1 5 a0 b1 1 a0 b0 100 a0 b1 1
a1 b0 1 a1 b0 1 a1 b1 100 a1 b0 1
a1 a1 10 a1 b1 100 a1 b1 1 a1 b1 100

Notice a few things

These tables do not represent prob-
ability distributions

They are just weights which can be
interpreted as the relative likelihood
of an event

For example, a = 0, b = 0 is more
likely than a = 1, b = 1
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But eventually we are interested in
probability distributions

In the directed case going from
factors to a joint probability dis-
tribution was easy as the factors
were themselves conditional probab-
ility distributions

We could just write the joint probab-
ility distribution as the product of the
factors (without violating the axioms
of probability)

What do we do in this case when the
factors are not probability distribu-
tions
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Assignment Unnormalized Normalized

a0 b0 c0 d0 300,000 4.17E-02
a0 b0 c0 d1 300,000 4.17E-02
a0 b0 c1 d0 300,000 4.17E-02
a0 b0 c1 d1 30 4.17E-06
a0 b1 c0 d0 500 6.94E-05
a0 b1 c0 d1 500 6.94E-05
a0 b1 c1 d0 5,000,000 6.94E-01
a0 b1 c1 d1 500 6.94E-05
a1 b0 c0 d0 100 1.39E-05
a1 b0 c0 d1 1,000,000 1.39E-01
a1 b0 c1 d0 100 1.39E-05
a1 b0 c1 d1 100 1.39E-05
a1 b1 c0 d0 10 1.39E-06
a1 b1 c0 d1 100,000 1.39E-02
a1 b1 c1 d0 100,000 1.39E-02
a1 b1 c1 d1 100,000 1.39E-02

Well we could still write it as a product
of these factors and normalize it appro-
priately

P (a, b, c, d) =

1

Z
φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a)

where

Z =
∑
a,b,c,d

φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a)

Based on the values that we had assigned
to the factors we can now compute the
full joint probability distribution

Z is called the partition function.
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Well we could still write it as a product
of these factors and normalize it appro-
priately

P (a, b, c, d) =

1

Z
φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a)

where

Z =
∑
a,b,c,d

φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a)

Based on the values that we had assigned
to the factors we can now compute the
full joint probability distribution

Z is called the partition function.
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D B

A

C

E F

Let us build on the original example
by adding some more students

Once again there is an edge between
two students if they study together

One way of interpreting these new
connections is that {A,D,E} from a
study group or a clique

Similarly {A,F,B} form a study
group and {C,D} form a study group
and {B,C} form a study group
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D B

A

C

E F

φ1(A,E)φ2(A,F )φ3(B,F )φ4(A,B)

φ5(A,D)φ6(D,E)φ7(B,C)φ8(C,D)

φ1(A,E,D)φ2(A,F,B)φ3(B,C)φ4(C,D)

Now, what should the factors be?

We could still have factors which cap-
ture pairwise interactions

But could we do something smarter
(and more efficient)

Instead of having a factor for each
pair of nodes why not have it for each
maximal clique?
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D B

A

C

FE

G

What if we add one more student?

What will be the factors in this case?

Remember, we are interested in max-
imal cliques

So instead of having factors φ(EAG)
φ(GAD) φ(EGD) we will have a
single factor φ(AEGD) correspond-
ing to the maximal clique
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Grade SAT

Intellligence

Letter

Difficulty

A distribution P factorizes over a Bayesian
Network G if P can be expressed as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|PaXi
)

B C

A

D

E F

A distribution factorizes over a Markov
Network H if P can be expressed as

P (X1, . . . , Xn) =
1

Z

m∏
i=1

φ(Di)

where each Di is a complete sub-graph
(maximal clique) in H

A distribution is a Gibbs distribution parametrized by a set of factors Φ = {φ1(D1), . . . , φm(Dm)}
if it is defined as

P (X1, . . . , Xn) =
1

Z

m∏
i=1

φi(Di)
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