Module 18.3: Local Independencies in a Markov Network

ullet Let U be the set of all random variables in our joint distribution

- ullet Let U be the set of all random variables in our joint distribution
- Let X, Y, Z be some distinct subsets of U

- Let *U* be the set of all random variables in our joint distribution
- Let X, Y, Z be some distinct subsets of U
- A distribution P over these RVs would imply $X \perp Y \mid Z$ if and only if we can write

$$P(X) = \phi_1(X, Z)\phi_2(Y, Z)$$

- Let *U* be the set of all random variables in our joint distribution
- Let X, Y, Z be some distinct subsets of U
- A distribution P over these RVs would imply $X \perp Y \mid Z$ if and only if we can write

$$P(X) = \phi_1(X, Z)\phi_2(Y, Z)$$

• Let us see this in the context of our original example

 \bullet In this example

$$P(A, B, C, D) = \frac{1}{Z} [\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)]$$

$$P(A, B, C, D) = \frac{1}{Z} [\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)]$$

• We can rewrite this as

$$P(A, B, C, D) = \frac{1}{Z} \underbrace{\left[\phi_1(A, B)\phi_2(B, C)\right]}_{\phi_5(B, \{A, C\})} \underbrace{\left[\phi_3(C, D)\phi_4(D, A)\right]}_{\phi_6(D, \{A, C\})}$$

$$\begin{split} P(A,B,C,D) &= \\ \frac{1}{Z} [\phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(D,A)] \end{split}$$

• We can rewrite this as

$$P(A, B, C, D) = \frac{1}{Z} \underbrace{\left[\phi_1(A, B)\phi_2(B, C)\right]}_{\phi_5(B, \{A, C\})} \underbrace{\left[\phi_3(C, D)\phi_4(D, A)\right]}_{\phi_6(D, \{A, C\})}$$

• We can say that $B \perp D | \{A, C\}$ which is indeed true

ullet In this example

$$P(A, B, C, D) = \frac{1}{Z} [\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)]$$

$$\begin{split} P(A,B,C,D) &= \\ \frac{1}{Z} [\phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(D,A)] \end{split}$$

• Alternatively we can rewrite this as

$$P(A, B, C, D) = \frac{1}{Z} \underbrace{[\phi_1(A, B)\phi_2(D, A)]}_{\phi_5(A, \{B, D\})} \underbrace{[\phi_3(C, D)\phi_4(B, C)]}_{\phi_6(C, \{B, D\})}$$

$$\begin{split} P(A,B,C,D) = \\ \frac{1}{Z} [\phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(D,A)] \end{split}$$

• Alternatively we can rewrite this as

$$P(A, B, C, D) = \frac{1}{Z} \underbrace{[\phi_1(A, B)\phi_2(D, A)]}_{\phi_5(A, \{B, D\})} \underbrace{[\phi_3(C, D)\phi_4(B, C)]}_{\phi_6(C, \{B, D\})}$$

• We can say that $A \perp C | \{B, D\}$ which is indeed true

• For a given Markov network H we define Markov Blanket of a RV X to be the neighbors of X in H

- For a given Markov network H we define Markov Blanket of a RV X to be the neighbors of X in H
- Analogous to the case of Bayesian Networks we can define the local independences associated with H to be

$$X \perp (U - \{X\} - MB_H) | MB_H(X)$$

Bayesian network

Local Independencies

 $X_i \bot NonDescendents_{X_i} | Parent_{X_i}^G$

Markov network

Bayesian network

Markov network

Local Independencies

$$X_i \perp NonDescendents_{X_i} | Parent_{X_i}^G$$

Bayesian network

Markov network

Local Independencies

$$X_i \perp NonDescendents_{X_i} | Parent_{X_i}^G$$

Local Independencies

$$X_i \bot NonNeighbors_{X_i} | Neighbors_{X_i}^G |$$