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Module 19.3: Restricted Boltzmann Machines
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We return back to our Markov Network
containing hidden variables and visible
variables

We will get rid of the image and just keep the
hidden and latent variables

We have edges between each pair of (hidden,
visible) variables.

We do not have edges between (hidden,
hidden) and (visible, visible) variables
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Earlier, we saw that given such a Markov
network the joint probability distribution can
be written as a product of factors

Can you tell how many factors are there in
this case?

Recall that factors correspond to maximal
cliques

What are the maximal cliques in this case?

every pair of visible and hidden node forms a
clique

How many such cliques do we have? (m× n)
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So we can write the joint pdf as a product of the
following factors

P (V,H) =
1

Z

∏
i

∏
j

φij(vi, hj)

In fact, we can also add additional factors
corresponding to the nodes and write

P (V,H) =
1

Z

∏
i

∏
j

φij(vi, hj)
∏
i

ψi(vi)
∏
j

ξj(hj)

It is legal to do this (i.e., add factors for ψi(vi)ξj(hj))
as long as we ensure that Z is adjusted in a way that
the resulting quantity is a probability distribution

Z is the partition function and is given by∑
V

∑
H

∏
i

∏
j

φij(vi, hj)
∏
i

ψi(vi)
∏
j

ξj(hj)
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v1 v2 · · · vm

h1 h2 · · · hn

Let us understand each of these factors in
more detail

For example, φ11(v1, h1) is a factor which
takes the values of v1 ∈ {0, 1} and h1 ∈ {0, 1}
and returns a value indicating the affinity
between these two variables

The adjoining table shows one such possible
instantiation of the φ11 function

Similarly, ψ1(v1) takes the value of v1 ∈ {0, 1}
and gives us a number which roughly indicates
the possibility of v1 taking on the value 1 or 0

The adjoining table shows one such possible
instantiation of the ψ11 function

A similar interpretation can be made for
ξ1(h1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19



5/10

v1 v2 · · · vm

h1 h2 · · · hn

Let us understand each of these factors in
more detail

For example, φ11(v1, h1) is a factor which
takes the values of v1 ∈ {0, 1} and h1 ∈ {0, 1}
and returns a value indicating the affinity
between these two variables

The adjoining table shows one such possible
instantiation of the φ11 function

Similarly, ψ1(v1) takes the value of v1 ∈ {0, 1}
and gives us a number which roughly indicates
the possibility of v1 taking on the value 1 or 0

The adjoining table shows one such possible
instantiation of the ψ11 function

A similar interpretation can be made for
ξ1(h1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19



5/10

v1 v2 · · · vm

h1 h2 · · · hn

φ11(v1, h1)

0 0 30
0 1 5
1 0 1
1 1 10

Let us understand each of these factors in
more detail

For example, φ11(v1, h1) is a factor which
takes the values of v1 ∈ {0, 1} and h1 ∈ {0, 1}
and returns a value indicating the affinity
between these two variables

The adjoining table shows one such possible
instantiation of the φ11 function

Similarly, ψ1(v1) takes the value of v1 ∈ {0, 1}
and gives us a number which roughly indicates
the possibility of v1 taking on the value 1 or 0

The adjoining table shows one such possible
instantiation of the ψ11 function

A similar interpretation can be made for
ξ1(h1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19



5/10

v1 v2 · · · vm

h1 h2 · · · hn

φ11(v1, h1)

0 0 30
0 1 5
1 0 1
1 1 10

Let us understand each of these factors in
more detail

For example, φ11(v1, h1) is a factor which
takes the values of v1 ∈ {0, 1} and h1 ∈ {0, 1}
and returns a value indicating the affinity
between these two variables

The adjoining table shows one such possible
instantiation of the φ11 function

Similarly, ψ1(v1) takes the value of v1 ∈ {0, 1}
and gives us a number which roughly indicates
the possibility of v1 taking on the value 1 or 0

The adjoining table shows one such possible
instantiation of the ψ11 function

A similar interpretation can be made for
ξ1(h1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19



5/10

v1 v2 · · · vm

h1 h2 · · · hn

φ11(v1, h1)

0 0 30
0 1 5
1 0 1
1 1 10

ψ1(v1)

0 10
1 2

Let us understand each of these factors in
more detail

For example, φ11(v1, h1) is a factor which
takes the values of v1 ∈ {0, 1} and h1 ∈ {0, 1}
and returns a value indicating the affinity
between these two variables

The adjoining table shows one such possible
instantiation of the φ11 function

Similarly, ψ1(v1) takes the value of v1 ∈ {0, 1}
and gives us a number which roughly indicates
the possibility of v1 taking on the value 1 or 0

The adjoining table shows one such possible
instantiation of the ψ11 function

A similar interpretation can be made for
ξ1(h1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19



5/10

v1 v2 · · · vm

h1 h2 · · · hn

φ11(v1, h1)

0 0 30
0 1 5
1 0 1
1 1 10

ψ1(v1)

0 10
1 2

Let us understand each of these factors in
more detail

For example, φ11(v1, h1) is a factor which
takes the values of v1 ∈ {0, 1} and h1 ∈ {0, 1}
and returns a value indicating the affinity
between these two variables

The adjoining table shows one such possible
instantiation of the φ11 function

Similarly, ψ1(v1) takes the value of v1 ∈ {0, 1}
and gives us a number which roughly indicates
the possibility of v1 taking on the value 1 or 0

The adjoining table shows one such possible
instantiation of the ψ11 function

A similar interpretation can be made for
ξ1(h1)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 19



6/10

Just to be sure that we understand this correctly let us take a small example
where |V | = 3 (i.e., V ∈ {0, 1}3) and |H| = 2 (i.e., H ∈ {0, 1}2)
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v1 v2 v3

h1 h2

φ11(v1, h1) φ12(v1, h2) φ21(v2, h1) φ22(v2, h2) φ31(v3, h1) φ32(v3, h2)

0 0 20 0 0 6 0 0 3 0 0 2 0 0 6 0 0 3
0 1 3 0 1 20 0 1 3 0 1 1 0 1 3 0 1 1
1 0 5 1 0 10 1 0 2 1 0 10 1 0 5 1 0 10
1 1 10 1 1 2 1 1 10 1 1 10 1 1 10 1 1 10

ψ1(v1) ψ2(v2) ψ3(v3) ξ1(h1) ξ2(h2)

0 30 0 100 0 1 0 100 0 10
1 1 1 1 1 100 1 1 1 10

Suppose we are now interested in P (V =<
0, 0, 0 >,H =< 1, 1 >)

We can compute this using the following
function

P (V =< 0, 0, 0 >,H =< 1, 1 >)

=
1

Z
φ11(0, 1)φ12(0, 1)φ21(0, 1)

φ22(0, 1)φ31(0, 1)φ32(0, 1)

ψ1(0)ψ2(0)ψ3(0)ξ1(1)ξ2(1)

and the partition function will be given by

1∑
v1=0

1∑
v2=0

1∑
v3=0

1∑
h1=0

1∑
h2=1

P (V =< v1, v2, v3 >,H =< h1, h2 >)
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v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×n

How do we learn these clique potentials:
φij(vi, hj), ψi(vi), ξj(hj)?

Whenever we want to learn something what
do we introduce?

(parameters)

So we will introduce a parametric form for
these clique potentials and then learn these
parameters

The specific parametric form chosen by RBMs
is

φij(vi, hj) = ewijvihj

ψi(vi) = ebivi

ξj(hj) = ecjhj
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b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
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W ∈ Rm×nw1,1 wm,n

With this parametric form, let us see what the
joint distribution looks like

P (V,H) =
1

Z

∏
i

∏
j

φij(vi, hj)
∏
i

ψi(vi)
∏
j

ξj(hj)

=
1

Z

∏
i

∏
j

ewijvihj
∏
i

ebivi
∏
j

ecjhj

=
1

Z
e
∑

i

∑
j wijvihje

∑
i bivie

∑
j cjhj

=
1

Z
e
∑

i

∑
j wijvihj+

∑
i bivi+

∑
j cjhj

=
1

Z
e−E(V,H) where,

E(V,H) = −
∑
i

∑
j

wijvihj −
∑
i

bivi −
∑
j

cjhj
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Because of the above form, we refer to these
networks as (restricted) Boltzmann machines

The term comes from statistical mechanics
where the distribution of particles in a system
over various possible states is given by

F (state) ∝ e−
E
kt

which is called the Boltzmann distribution or
the Gibbs distribution
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