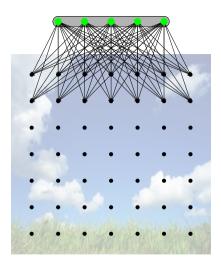
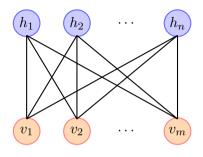
Module 19.3: Restricted Boltzmann Machines



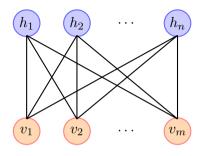
• We return back to our Markov Network containing hidden variables and visible variables

 (v_1) (v_2) \cdots (v_m)

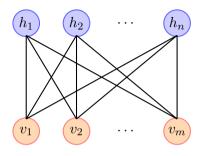
- We return back to our Markov Network containing hidden variables and visible variables
- We will get rid of the image and just keep the hidden and latent variables



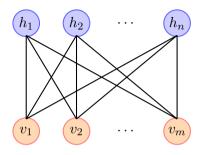
- We return back to our Markov Network containing hidden variables and visible variables
- We will get rid of the image and just keep the hidden and latent variables
- We have edges between each pair of (hidden, visible) variables.



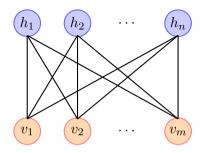
- We return back to our Markov Network containing hidden variables and visible variables
- We will get rid of the image and just keep the hidden and latent variables
- We have edges between each pair of (hidden, visible) variables.
- We do not have edges between (hidden, hidden) and (visible, visible) variables



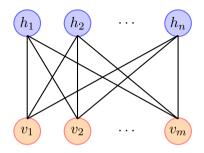
• Earlier, we saw that given such a Markov network the joint probability distribution can be written as a product of factors



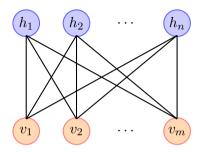
- Earlier, we saw that given such a Markov network the joint probability distribution can be written as a product of factors
- Can you tell how many factors are there in this case?



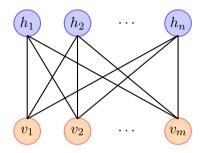
- Earlier, we saw that given such a Markov network the joint probability distribution can be written as a product of factors
- Can you tell how many factors are there in this case?
- Recall that factors correspond to maximal cliques



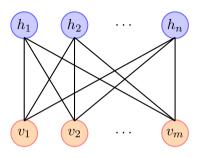
- Earlier, we saw that given such a Markov network the joint probability distribution can be written as a product of factors
- Can you tell how many factors are there in this case?
- Recall that factors correspond to maximal cliques
- What are the maximal cliques in this case?



- Earlier, we saw that given such a Markov network the joint probability distribution can be written as a product of factors
- Can you tell how many factors are there in this case?
- Recall that factors correspond to maximal cliques
- What are the maximal cliques in this case? every pair of visible and hidden node forms a clique

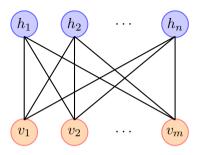


- Earlier, we saw that given such a Markov network the joint probability distribution can be written as a product of factors
- Can you tell how many factors are there in this case?
- Recall that factors correspond to maximal cliques
- What are the maximal cliques in this case? every pair of visible and hidden node forms a clique
- How many such cliques do we have? $(m \times n)$



• So we can write the joint pdf as a product of the following factors

$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j)$$

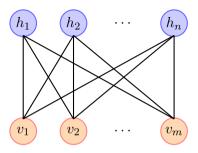


• So we can write the joint pdf as a product of the following factors

$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j)$$

• In fact, we can also add additional factors corresponding to the nodes and write

$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$



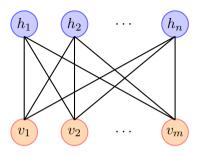
 So we can write the joint pdf as a product of the following factors

$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j)$$

• In fact, we can also add additional factors corresponding to the nodes and write

$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$

• It is legal to do this (i.e., add factors for $\psi_i(v_i)\xi_j(h_j)$) as long as we ensure that Z is adjusted in a way that the resulting quantity is a probability distribution



• So we can write the joint pdf as a product of the following factors

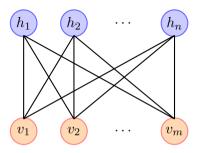
$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j)$$

 In fact, we can also add additional factors corresponding to the nodes and write

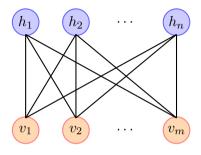
$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$

- It is legal to do this (i.e., add factors for $\psi_i(v_i)\xi_j(h_j)$) as long as we ensure that Z is adjusted in a way that the resulting quantity is a probability distribution
- Z is the partition function and is given by

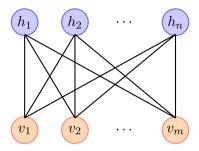
$$\sum_{V} \sum_{H} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$



• Let us understand each of these factors in more detail

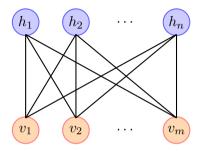


- Let us understand each of these factors in more detail
- For example, $\phi_{11}(v_1, h_1)$ is a factor which takes the values of $v_1 \in \{0, 1\}$ and $h_1 \in \{0, 1\}$ and returns a value indicating the affinity between these two variables



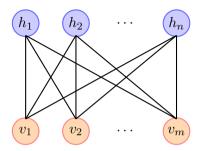
¢	$b_{11}(i$	$v_1, h_1)$
0	0	30
0	1	5
1	0	1
1	1	10

- Let us understand each of these factors in more detail
- For example, $\phi_{11}(v_1, h_1)$ is a factor which takes the values of $v_1 \in \{0, 1\}$ and $h_1 \in \{0, 1\}$ and returns a value indicating the affinity between these two variables
- The adjoining table shows one such possible instantiation of the ϕ_{11} function



¢	$b_{11}(i$	$v_1, h_1)$
0	0	30
0	1	5
1	0	1
1	1	10

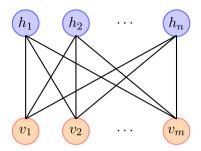
- Let us understand each of these factors in more detail
- For example, $\phi_{11}(v_1, h_1)$ is a factor which takes the values of $v_1 \in \{0, 1\}$ and $h_1 \in \{0, 1\}$ and returns a value indicating the affinity between these two variables
- The adjoining table shows one such possible instantiation of the ϕ_{11} function
- Similarly, $\psi_1(v_1)$ takes the value of $v_1 \in \{0, 1\}$ and gives us a number which roughly indicates the possibility of v_1 taking on the value 1 or 0



¢	$b_{11}(i$	$v_1, h_1)$	
0	0	30	
0	1	5	
1	0	1	
1	1	10	

$$\begin{array}{c|c} \psi_1(v_1) \\ 0 & 10 \\ 1 & 2 \end{array}$$

- Let us understand each of these factors in more detail
- For example, $\phi_{11}(v_1, h_1)$ is a factor which takes the values of $v_1 \in \{0, 1\}$ and $h_1 \in \{0, 1\}$ and returns a value indicating the affinity between these two variables
- The adjoining table shows one such possible instantiation of the ϕ_{11} function
- Similarly, $\psi_1(v_1)$ takes the value of $v_1 \in \{0, 1\}$ and gives us a number which roughly indicates the possibility of v_1 taking on the value 1 or 0
- The adjoining table shows one such possible instantiation of the ψ_{11} function

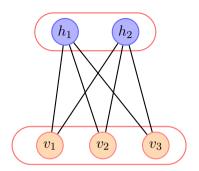


¢	11($v_1, h_1)$
0	0	30
0	1	5
1	0	1
1	1	10

$$\begin{array}{c|c} \psi_1(v_1) \\ \hline 0 & 10 \\ 1 & 2 \\ \end{array}$$

- Let us understand each of these factors in more detail
- For example, $\phi_{11}(v_1, h_1)$ is a factor which takes the values of $v_1 \in \{0, 1\}$ and $h_1 \in \{0, 1\}$ and returns a value indicating the affinity between these two variables
- The adjoining table shows one such possible instantiation of the ϕ_{11} function
- Similarly, $\psi_1(v_1)$ takes the value of $v_1 \in \{0, 1\}$ and gives us a number which roughly indicates the possibility of v_1 taking on the value 1 or 0
- The adjoining table shows one such possible instantiation of the ψ_{11} function
- A similar interpretation can be made for $\xi_1(h_1)$

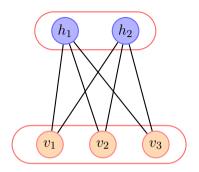
Just to be sure that we understand this correctly let us take a small example where |V|=3 (i.e., $V\in\{0,1\}^3$) and |H|=2 (i.e., $H\in\{0,1\}^2$)



ϕ_1		$, h_1)$															$, h_{2})$
0	0	20	0	0	6	0	0	3	0	0	2	0	0	6	0	0	3
0	1	3	0	1	20	0	1	3	0	1	1	0	1	3	0	1	1
1	0	5	1	0	10	1	0	2	1	0	10	1	0	5	1	0	10
1	1	10	1	1	2	1	1	10	1	1	10	1	1	10	1	1	10
			Г	-l- 1	\ T	.l. 1	· \	ale i	(\	Τ,	· (L.)	Τ,	- /1.	7			

ψ_1	(v_1)	ψ_2	(v_2)	ψ_i				$\xi_{2}(h_{2})$		
0	30	0	100	0			100	0	10	
1	1	1	1	1	100	1	1	1	10	

• Suppose we are now interested in P(V=<0,0,0>,H=<1,1>)



١	ϕ_1	$_{1}(v_{1}$	$, h_1)$	φ	$12(v_1$	$, h_2)$	ϕ_2	$1(v_2,$			$_{2}(v_{2})$	$, h_2)$	ϕ_3	$1(v_3)$	$, h_1)$	ϕ_3	$_{2}(v_{3}$	$, h_2)$
ı	0	0	20	0	0	6	0	0	3	0	0	2	0	0	6	0	0	3
ı	0	1	3	0	1	20	0	1	3	0	1	1	0	1	3	0	1	1
ı	1	0	5	1	0	10	1	0	2	1	0	10	1	0	5	1	0	10
ı	1	1	10	1	1	2	1	1	10	1	1	10	1	1	10	1	1	10
					ψ_1	$v_1)$	ψ_2	$v_2)$	ψ_3	(v_3)	1 8	$f_1(h_1)$	1 8	$_{2}(h_{2})$	()			
					Λ	20	Ω	100	0	- 1	- 0	100	. () 1	o l			

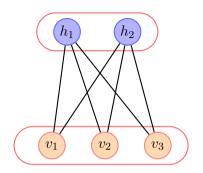
- Suppose we are now interested in P(V=<0,0,0>,H=<1,1>)
- We can compute this using the following function

$$P(V = <0, 0, 0>, H = <1, 1>)$$

$$= \frac{1}{Z} \phi_{11}(0, 1) \phi_{12}(0, 1) \phi_{21}(0, 1)$$

$$\phi_{22}(0, 1) \phi_{31}(0, 1) \phi_{32}(0, 1)$$

$$\psi_{1}(0) \psi_{2}(0) \psi_{3}(0) \xi_{1}(1) \xi_{2}(1)$$



$\phi_{11}(v_1, h_1)$	v_1, h_1 $\phi_{12}(v_1, h_2)$				$\phi_{21}(v_2, h_1)$				$\phi_{22}(v_2, h_2)$			$, h_1)$	$\phi_{32}(v_3, h_2)$		
0 0 20	0	0	6	0	0	3	0	0	2	0	0	6	0	0	3
0 1 3	0	1	20	0	1				1	0	1	3	0	1	1
1 0 5	1	0	10	1	0	2	1	0	10	1	0	5	1	0	10
1 1 10	1	1	2	1	1	10	1	1	10	1	1	10	1	1	10
		$\psi_1($	$v_1)$	ψ_2	$v_2)$	ψ_3	(v_3)	1.5	$f_1(h_1)$	1	$_{2}(h_{2})$	2)			

- Suppose we are now interested in P(V=<0,0,0>,H=<1,1>)
- We can compute this using the following function

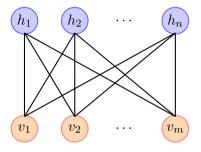
$$\begin{split} P(V = <0, 0, 0>, H = <1, 1>) \\ = &\frac{1}{Z}\phi_{11}(0, 1)\phi_{12}(0, 1)\phi_{21}(0, 1) \\ &\phi_{22}(0, 1)\phi_{31}(0, 1)\phi_{32}(0, 1) \\ &\psi_{1}(0)\psi_{2}(0)\psi_{3}(0)\xi_{1}(1)\xi_{2}(1) \end{split}$$

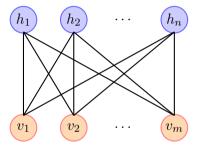
• and the partition function will be given by

$$\sum_{v_1=0}^{1} \sum_{v_2=0}^{1} \sum_{v_3=0}^{1} \sum_{h_1=0}^{1} \sum_{h_2=1}^{1}$$

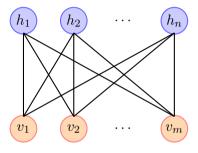
$$P(V=< v_1, \underbrace{v_2, v_3}_{\text{\tiny \mathbb{Z}}}>, \underbrace{H}_{\text{\tiny \mathbb{Z}}}=<\underbrace{h_1, h_2}_{\text{\tiny \mathbb{Z}}}>_{\text{\tiny \mathbb{Z}}}>_{\text{\tiny \mathbb{Z}}}$$

• How do we learn these clique potentials: $\phi_{ij}(v_i, h_j), \psi_i(v_i), \xi_j(h_j)$?

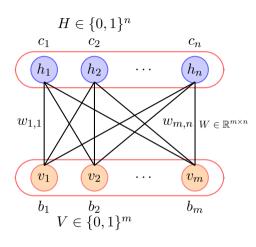




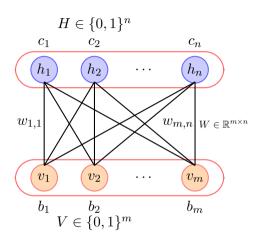
- How do we learn these clique potentials: $\phi_{ij}(v_i, h_j), \psi_i(v_i), \xi_j(h_j)$?
- Whenever we want to learn something what do we introduce?



- How do we learn these clique potentials: $\phi_{ij}(v_i, h_j), \psi_i(v_i), \xi_j(h_j)$?
- Whenever we want to learn something what do we introduce? (parameters)



- How do we learn these clique potentials: $\phi_{ij}(v_i, h_j), \psi_i(v_i), \xi_j(h_j)$?
- Whenever we want to learn something what do we introduce? (parameters)
- So we will introduce a parametric form for these clique potentials and then learn these parameters

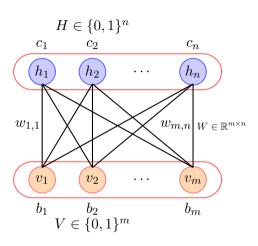


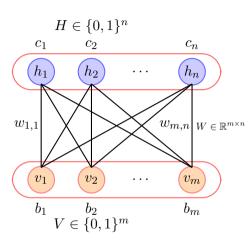
- How do we learn these clique potentials: $\phi_{ij}(v_i, h_j), \psi_i(v_i), \xi_j(h_j)$?
- Whenever we want to learn something what do we introduce? (parameters)
- So we will introduce a parametric form for these clique potentials and then learn these parameters
- The specific parametric form chosen by RBMs is

$$\phi_{ij}(v_i, h_j) = e^{w_{ij}v_i h_j}$$

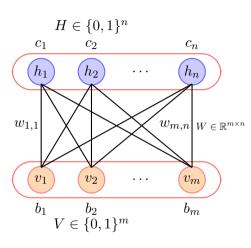
$$\psi_i(v_i) = e^{b_i v_i}$$

$$\xi_j(h_j) = e^{c_j h_j}$$

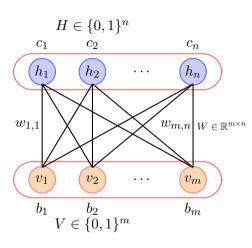




$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$



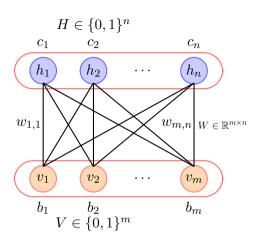
$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$
$$= \frac{1}{Z} \prod_{i} \prod_{j} e^{w_{ij}v_i h_j} \prod_{i} e^{b_i v_i} \prod_{j} e^{c_j h_j}$$



$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$

$$= \frac{1}{Z} \prod_{i} \prod_{j} e^{w_{ij}v_i h_j} \prod_{i} e^{b_i v_i} \prod_{j} e^{c_j h_j}$$

$$= \frac{1}{Z} e^{\sum_{i} \sum_{j} w_{ij} v_i h_j} e^{\sum_{i} b_i v_i} e^{\sum_{j} c_j h_j}$$

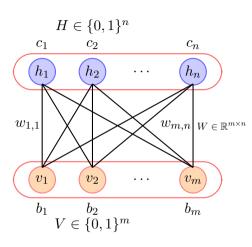


$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$

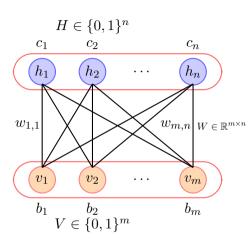
$$= \frac{1}{Z} \prod_{i} \prod_{j} e^{w_{ij}v_ih_j} \prod_{i} e^{b_iv_i} \prod_{j} e^{c_jh_j}$$

$$= \frac{1}{Z} e^{\sum_{i} \sum_{j} w_{ij}v_ih_j} e^{\sum_{i} b_iv_i} e^{\sum_{j} c_jh_j}$$

$$= \frac{1}{Z} e^{\sum_{i} \sum_{j} w_{ij}v_ih_j + \sum_{i} b_iv_i + \sum_{j} c_jh_j}$$



$$\begin{split} P(V,H) &= \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i,h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j) \\ &= \frac{1}{Z} \prod_{i} \prod_{j} e^{w_{ij}v_ih_j} \prod_{i} e^{b_iv_i} \prod_{j} e^{c_jh_j} \\ &= \frac{1}{Z} e^{\sum_{i} \sum_{j} w_{ij}v_ih_j} e^{\sum_{i} b_iv_i} e^{\sum_{j} c_jh_j} \\ &= \frac{1}{Z} e^{\sum_{i} \sum_{j} w_{ij}v_ih_j + \sum_{i} b_iv_i + \sum_{j} c_jh_j} \\ &= \frac{1}{Z} e^{-E(V,H)} \text{ where,} \end{split}$$



$$P(V,H) = \frac{1}{Z} \prod_{i} \prod_{j} \phi_{ij}(v_i, h_j) \prod_{i} \psi_i(v_i) \prod_{j} \xi_j(h_j)$$

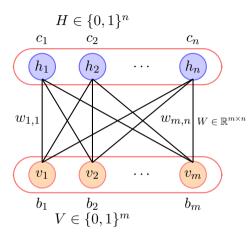
$$= \frac{1}{Z} \prod_{i} \prod_{j} e^{w_{ij}v_i h_j} \prod_{i} e^{b_i v_i} \prod_{j} e^{c_j h_j}$$

$$= \frac{1}{Z} e^{\sum_{i} \sum_{j} w_{ij} v_i h_j} e^{\sum_{i} b_i v_i} e^{\sum_{j} c_j h_j}$$

$$= \frac{1}{Z} e^{\sum_{i} \sum_{j} w_{ij} v_i h_j + \sum_{i} b_i v_i + \sum_{j} c_j h_j}$$

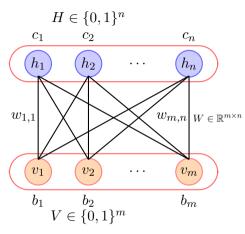
$$= \frac{1}{Z} e^{-E(V,H)} \text{ where,}$$

$$E(V,H) = -\sum_{i} \sum_{j} w_{ij} v_i h_j - \sum_{i} b_i v_i - \sum_{j} c_j h_j$$



$$E(V,H) = -\sum_{i} \sum_{j} w_{ij} v_i h_j - \sum_{i} b_i v_i - \sum_{j} c_j h_j$$

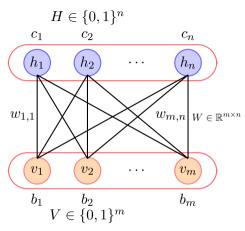
• Because of the above form, we refer to these networks as (restricted) Boltzmann machines



$$E(V,H) = -\sum_{i} \sum_{j} w_{ij} v_i h_j - \sum_{i} b_i v_i - \sum_{j} c_j h_j$$

- Because of the above form, we refer to these networks as (restricted) Boltzmann machines
- The term comes from statistical mechanics where the distribution of particles in a system over various possible states is given by

$$F(state) \propto e^{-\frac{E}{kt}}$$



$$E(V,H) = -\sum_{i} \sum_{j} w_{ij} v_i h_j - \sum_{i} b_i v_i - \sum_{j} c_j h_j$$

- Because of the above form, we refer to these networks as (restricted) Boltzmann machines
- The term comes from statistical mechanics where the distribution of particles in a system over various possible states is given by

$$F(state) \propto e^{-\frac{E}{kt}}$$

which is called the Boltzmann distribution or the Gibbs distribution