Module 19.5: Unsupervised Learning with RBMs

• So far, we have mainly dealt with supervised learning where we are given $\{x_i, y_i\}_{i=1}^n$ for training

- So far, we have mainly dealt with supervised learning where we are given $\{x_i, y_i\}_{i=1}^n$ for training
- In other words, for every training example we are given a label (or class) associated with it

- So far, we have mainly dealt with supervised learning where we are given $\{x_i, y_i\}_{i=1}^n$ for training
- In other words, for every training example we are given a label (or class) associated with it
- Our job was then to learn a model which predicts \hat{y} such that the difference between y and \hat{y} is minimized

• But in the case of RBMs, our training data only contains x (for example, images)

- But in the case of RBMs, our training data only contains x (for example, images)
- There is no explicit label (y) associated with the input

- But in the case of RBMs, our training data only contains x (for example, images)
- There is no explicit label (y) associated with the input
- Of course, in addition to x we have the latent variable h but we don't know what these h's are

- But in the case of RBMs, our training data only contains x (for example, images)
- There is no explicit label (y) associated with the input
- Of course, in addition to x we have the latent variable h but we don't know what these h's are
- We are interested in learning P(x, h) which we have parameterized as

$$P(V,H) = \frac{1}{Z}e^{-(-\sum_{i}\sum_{j}w_{ij}v_{i}h_{j} - \sum_{i}b_{i}v_{i} - \sum_{j}c_{j}h_{j})}$$

• What is the objective function that we should use?

- What is the objective function that we should use?
- First note that if we have learnt P(x, h) we can compute P(x)

- What is the objective function that we should use?
- First note that if we have learnt P(x,h) we can compute P(x)
- What would we want P(X = x) to be for any x belonging to our training data?

- What is the objective function that we should use?
- First note that if we have learnt P(x,h) we can compute P(x)
- What would we want P(X = x) to be for any x belonging to our training data?
- We would want it to be high

- What is the objective function that we should use?
- First note that if we have learnt P(x,h) we can compute P(x)
- What would we want P(X = x) to be for any x belonging to our training data?
- We would want it to be high
- So now can you think of an objective function

- What is the objective function that we should use?
- First note that if we have learnt P(x,h) we can compute P(x)
- What would we want P(X = x) to be for any x belonging to our training data?
- We would want it to be high
- So now can you think of an objective function

$$maximize \prod_{i=1}^{N} P(X = x_i)$$

- What is the objective function that we should use?
- First note that if we have learnt P(x,h) we can compute P(x)
- What would we want P(X = x) to be for any x belonging to our training data?
- We would want it to be high
- So now can you think of an objective function

$$maximize \prod_{i=1}^{N} P(X = x_i)$$

• Or, log-likelihood

$$\ln \mathcal{L}(\theta) = \ln \prod_{i=1}^{l} p(x_i|\theta) = \sum_{i=1}^{l} \ln p(x_i|\theta)$$

- What is the objective function that we should use?
- First note that if we have learnt P(x,h) we can compute P(x)
- What would we want P(X = x) to be for any x belonging to our training data?
- We would want it to be high
- So now can you think of an objective function

$$maximize \prod_{i=1}^{N} P(X = x_i)$$

• Or, log-likelihood

$$\ln \mathcal{L}(\theta) = \ln \prod_{i=1}^{l} p(x_i|\theta) = \sum_{i=1}^{l} \ln p(x_i|\theta)$$

where θ are the parameters

• Okay so we have the objective function now! What next?

- Okay so we have the objective function now! What next?
- We need a learning algorithm

- Okay so we have the objective function now! What next?
- We need a learning algorithm
- We can just use gradient descent if we are able to compute the gradient of the loss function w.r.t. the parameters

- Okay so we have the objective function now! What next?
- We need a learning algorithm
- We can just use gradient descent if we are able to compute the gradient of the loss function w.r.t. the parameters
- Let us see if we can do that