Module 19.7: Motivation for Sampling

$$\frac{\partial \mathcal{L}(\theta)}{\partial w_{ij}} = \mathbb{E}_{p(H|V)}[v_i h_j] - \mathbb{E}_{p(V,H)}[v_i h_j]$$

• The trick is to approximate the sum by using a few samples instead of an exponential number of samples

$$\frac{\partial \mathcal{L}(\theta)}{\partial w_{ij}} = \mathbb{E}_{p(H|V)}[v_i h_j] - \mathbb{E}_{p(V,H)}[v_i h_j]$$

- The trick is to approximate the sum by using a few samples instead of an exponential number of samples
- We will try to understand this with the help of an analogy

• Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person
- The value assigned to this random variable can be any person from your population

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person
- The value assigned to this random variable can be any person from your population
- For each person you have an associated value denoted by weight(X)

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person
- The value assigned to this random variable can be any person from your population
- For each person you have an associated value denoted by weight(X)
- You are then interested in computing the expected value of weight(X) as shown on the RHS

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person
- The value assigned to this random variable can be any person from your population
- For each person you have an associated value denoted by weight(X)
- You are then interested in computing the expected value of weight(X) as shown on the RHS

$$\mathbb{E}[weight(X)] = \sum_{(x \in P)} p(x)weight(x)$$

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person
- The value assigned to this random variable can be any person from your population
- For each person you have an associated value denoted by weight(X)
- You are then interested in computing the expected value of weight(X) as shown on the RHS

$$\mathbb{E}[weight(X)] = \sum_{(x \in P)} p(x)weight(x)$$

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person
- The value assigned to this random variable can be any person from your population
- For each person you have an associated value denoted by weight(X)
- You are then interested in computing the expected value of weight(X) as shown on the RHS

$$\mathbb{E}[weight(X)] = \sum_{(x \in P)} p(x)weight(x)$$

$$\mathbb{E}[weight(X)] \approx \frac{\sum_{x \in P[:10000]} [p(x)weight(x)]}{\sum_{x \in P[:10000]} p(x)}$$

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person
- The value assigned to this random variable can be any person from your population
- For each person you have an associated value denoted by weight(X)
- You are then interested in computing the expected value of weight(X) as shown on the RHS

$$\mathbb{E}[weight(X)] = \sum_{(x \in P)} p(x)weight(x)$$

$$\mathbb{E}[weight(X)] \approx \frac{\sum_{x \in P[:10000]} [p(x)weight(x)]}{\sum_{x \in P[:10000]} p(x)}$$

• Further, you assume that $P(X) = \frac{1}{N} = \frac{1}{10K}$, i.e., every person in your population is equally likely

- Suppose you live in a city which has a population of 10M and you want to compute the average weight of this population
- You can think of X as a random variable which denotes a person
- The value assigned to this random variable can be any person from your population
- For each person you have an associated value denoted by weight(X)
- You are then interested in computing the expected value of weight(X) as shown on the RHS

$$\mathbb{E}[weight(X)] = \sum_{(x \in P)} p(x)weight(x)$$

$$\mathbb{E}[weight(X)] \approx \frac{\sum_{x \in P[:10000]} [p(x)weight(x)]}{\sum_{x \in P[:10000]} p(x)}$$

• Further, you assume that $P(X) = \frac{1}{N} = \frac{1}{10K}$, i.e., every person in your population is equally likely

$$\mathbb{E}[weight(X)] \approx \frac{\sum_{x \in Persons[:10000]} [weight(x)]}{10^4}$$

$$\mathbb{E}[X] = \sum_{(x \in P)} x p(x)$$

• This looks easy, why can't we do the same for our task?

$$\mathbb{E}[X] = \sum_{(x \in P)} x p(x)$$

- This looks easy, why can't we do the same for our task?
- Why can't we simply approximate the sum by using some samples?

$$\mathbb{E}[X] = \sum_{(x \in P)} xp(x)$$

- This looks easy, why can't we do the same for our task?
- Why can't we simply approximate the sum by using some samples?
- What does that mean? It means that instead of considering all possible values of $\{v,h\} \in 2^{m+n}$ let us just consider some samples from this population

$$\mathbb{E}[X] = \sum_{(x \in P)} x p(x)$$

- This looks easy, why can't we do the same for our task?
- Why can't we simply approximate the sum by using some samples?
- What does that mean? It means that instead of considering all possible values of $\{v,h\} \in 2^{m+n}$ let us just consider some samples from this population
- Analogy: Earlier we had 10M samples in the population from which we drew 10K samples, now we have 2^{m+n} samples in the population from which we need to draw a reasonable number of samples

$$\mathbb{E}[X] = \sum_{(x \in P)} x p(x)$$

- This looks easy, why can't we do the same for our task?
- Why can't we simply approximate the sum by using some samples?
- What does that mean? It means that instead of considering all possible values of $\{v,h\} \in 2^{m+n}$ let us just consider some samples from this population
- Analogy: Earlier we had 10M samples in the population from which we drew 10K samples, now we have 2^{m+n} samples in the population from which we need to draw a reasonable number of samples
- Why is this not straightforward? Let us see!

• For simplicity, first let us just focus on the visible variables $(V \in 2^m)$ and let us see what it means to draw samples from P(V)

- For simplicity, first let us just focus on the visible variables $(V \in 2^m)$ and let us see what it means to draw samples from P(V)
- Well, we know that $V = v_1, v_2, \dots, v_m$ where each $v_i \in \{0, 1\}$

- For simplicity, first let us just focus on the visible variables $(V \in 2^m)$ and let us see what it means to draw samples from P(V)
- Well, we know that $V = v_1, v_2, \dots, v_m$ where each $v_i \in \{0, 1\}$
- Suppose we decide to approximate the sum by 10K samples instead of the full 2^m samples

- For simplicity, first let us just focus on the visible variables $(V \in 2^m)$ and let us see what it means to draw samples from P(V)
- Well, we know that $V = v_1, v_2, \dots, v_m$ where each $v_i \in \{0, 1\}$
- Suppose we decide to approximate the sum by 10K samples instead of the full 2^m samples
- It is easy to create these samples by assigning values to each v_i

- For simplicity, first let us just focus on the visible variables $(V \in 2^m)$ and let us see what it means to draw samples from P(V)
- Well, we know that $V = v_1, v_2, \dots, v_m$ where each $v_i \in \{0, 1\}$
- Suppose we decide to approximate the sum by 10K samples instead of the full 2^m samples
- It is easy to create these samples by assigning values to each v_i
- For example, $V = 11111\dots 11111, V = 00000\dots 0000, V = 00110011\dots 00110011, \dots V = 0101\dots 0101$ are all samples from this population

- For simplicity, first let us just focus on the visible variables $(V \in 2^m)$ and let us see what it means to draw samples from P(V)
- Well, we know that $V = v_1, v_2, \dots, v_m$ where each $v_i \in \{0, 1\}$
- Suppose we decide to approximate the sum by 10K samples instead of the full 2^m samples
- It is easy to create these samples by assigning values to each v_i
- For example, $V = 11111\dots 11111, V = 00000\dots 0000, V = 00110011\dots 00110011, \dots V = 0101\dots 0101$ are all samples from this population
- So which samples do we consider?

• Well, that's where the catch is!

- Well, that's where the catch is!
- Unlike, our population analogy, here we cannot assume that every sample is equally likely

- Well, that's where the catch is!
- Unlike, our population analogy, here we cannot assume that every sample is equally likely
- Why?

- Well, that's where the catch is!
- Unlike, our population analogy, here we cannot assume that every sample is equally likely
- Why? (Hint: consider the case that visible variables correspond to pixels from natural images)

Likely

Unlikely

- Well, that's where the catch is!
- Unlike, our population analogy, here we cannot assume that every sample is equally likely
- Why? (Hint: consider the case that visible variables correspond to pixels from natural images)
- Clearly some images are more likely than the others!

Likely

Unlikely

- Well, that's where the catch is!
- Unlike, our population analogy, here we cannot assume that every sample is equally likely
- Why? (Hint: consider the case that visible variables correspond to pixels from natural images)
- Clearly some images are more likely than the others!
- Hence, we cannot assume that all samples from the population $(V \in 2^m)$ are equally likely

Uniform distribution

Multimodal distribution

• Let us see this in more detail

Uniform distribution

Multimodal distribution

- Let us see this in more detail
- In our analogy, every person was equally likely so we could just sample people uniformly randomly

Uniform distribution

Multimodal distribution

- Let us see this in more detail
- In our analogy, every person was equally likely so we could just sample people uniformly randomly
- However, now if we sample people uniformly randomly then we will not get the true picture of the expected value

Uniform distribution

Multimodal distribution

- Let us see this in more detail
- In our analogy, every person was equally likely so we could just sample people uniformly randomly
- However, now if we sample people uniformly randomly then we will not get the true picture of the expected value
- We need to draw more samples from the high probability region and fewer samples from the low probability region

Uniform distribution

Multimodal distribution

- Let us see this in more detail
- In our analogy, every person was equally likely so we could just sample people uniformly randomly
- However, now if we sample people uniformly randomly then we will not get the true picture of the expected value
- We need to draw more samples from the high probability region and fewer samples from the low probability region
- In other words each sample needs to be drawn in proportion to its probability and not uniformly

• That is where the problem lies!

$$\frac{\partial \mathcal{L}(\theta|V)}{\partial w_{ij}} = \mathbb{E}_{p(H|V)}[v_i h_j] - \mathbb{E}_{p(V,H)}[v_i h_j]$$

$$Z = \sum_{V} \sum_{H} \left(\prod_{i} \prod_{j} \phi_{ij}(v_{i}, h_{j}) \right)$$
$$\prod_{i} \psi_{i}(v_{i}) \prod_{j} \xi_{j}(h_{j})$$

$$\frac{\partial \mathcal{L}(\theta|V)}{\partial w_{ii}} = \mathbb{E}_{p(H|V)}[v_i h_j] - \mathbb{E}_{p(V,H)}[v_i h_j]$$

$$Z = \sum_{V} \sum_{H} \left(\prod_{i} \prod_{j} \phi_{ij}(v_{i}, h_{j}) \right)$$
$$\prod_{i} \psi_{i}(v_{i}) \prod_{j} \xi_{j}(h_{j})$$

- That is where the problem lies!
- To draw a sample (V, H), we need to know its probability P(V, H)

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta}|V)}{\partial w_{ij}} = \mathbb{E}_{p(H|V)}[v_i h_j] - \mathbb{E}_{p(\boldsymbol{V},\boldsymbol{H})}[v_i h_j]$$

$$Z = \sum_{V} \sum_{H} \left(\prod_{i} \prod_{j} \phi_{ij}(v_{i}, h_{j}) \right)$$
$$\prod_{i} \psi_{i}(v_{i}) \prod_{j} \xi_{j}(h_{j})$$

- That is where the problem lies!
- To draw a sample (V, H), we need to know its probability P(V, H)
- And of course, we also need this P(V, H) to compute the expectation

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta}|\boldsymbol{V})}{\partial w_{ij}} = \mathbb{E}_{p(\boldsymbol{H}|\boldsymbol{V})}[v_i h_j] - \mathbb{E}_{\boldsymbol{p}(\boldsymbol{V},\boldsymbol{H})}[v_i h_j]$$

$$Z = \sum_{V} \sum_{H} \left(\prod_{i} \prod_{j} \phi_{ij}(v_{i}, h_{j}) \right)$$
$$\prod_{i} \psi_{i}(v_{i}) \prod_{j} \xi_{j}(h_{j})$$

- That is where the problem lies!
- To draw a sample (V, H), we need to know its probability P(V, H)
- And of course, we also need this P(V, H) to compute the expectation
- But, unfortunately computing P(V, H) is intractable because of the partition function Z

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta}|\boldsymbol{V})}{\partial w_{ij}} = \mathbb{E}_{p(\boldsymbol{H}|\boldsymbol{V})}[v_i h_j] - \mathbb{E}_{\boldsymbol{p}(\boldsymbol{V},\boldsymbol{H})}[v_i h_j]$$

$$Z = \sum_{V} \sum_{H} \left(\prod_{i} \prod_{j} \phi_{ij}(v_{i}, h_{j}) \right)$$
$$\prod_{i} \psi_{i}(v_{i}) \prod_{j} \xi_{j}(h_{j})$$

- That is where the problem lies!
- To draw a sample (V, H), we need to know its probability P(V, H)
- And of course, we also need this P(V, H) to compute the expectation
- But, unfortunately computing P(V, H) is intractable because of the partition function Z
- Hence, approximating the summation by using a few samples is not straightforward! (or rather drawing a few samples from the distribution is hard!)

The story so far

• Conclusion: Okay, I get it that drawing samples from this distribution P is hard.

The story so far

- Conclusion: Okay, I get it that drawing samples from this distribution P is hard.
- Question: Is it possible to draw samples from an easier distribution (say, Q) as long as I am sure that if I keep drawing samples from Q eventually my samples will start looking as if they were drawn from P!

The story so far

- Conclusion: Okay, I get it that drawing samples from this distribution P is hard.
- Question: Is it possible to draw samples from an easier distribution (say, Q) as long as I am sure that if I keep drawing samples from Q eventually my samples will start looking as if they were drawn from P!
- Answer: Well if you can actually prove this then why not? (and that's what we do in Gibbs Sampling)