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Module 19.7: Motivation for Sampling
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∂L (θ)

∂wij
= Ep(H|V )[vihj ]− Ep(V,H)[vihj ]

The trick is to approximate the sum by using
a few samples instead of an exponential
number of samples

We will try to understand this with the help
of an analogy
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Suppose you live in a city which
has a population of 10M and you
want to compute the average
weight of this population

You can think of X as a random
variable which denotes a person

The value assigned to this
random variable can be any
person from your population

For each person you have an
associated value denoted by
weight(X)

You are then interested in
computing the expected value of
weight(X) as shown on the RHS

E[weight(X)] =
∑
(x∈P )

p(x)weight(x)

Of course, it is going to be hard to get the
weights of every person in the population
and hence in practice we approximate the
above sum by sampling only few subjects
from the population (say 10000)

E[weight(X)] ≈
∑

x∈P [:10000][p(x)weight(x)]∑
x∈P [:10000] p(x)

Further, you assume that P (X) = 1
N = 1

10K ,
i.e., every person in your population is
equally likely

E[weight(X)] ≈
∑

x∈Persons[:10000][weight(x)]
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E[X] =
∑
(x∈P )

xp(x)

This looks easy, why can’t we do the same
for our task ?

Why can’t we simply approximate the sum
by using some samples?

What does that mean? It means that instead
of considering all possible values of
{v, h} ∈ 2m+n let us just consider some
samples from this population

Analogy: Earlier we had 10M samples in the
population from which we drew 10K
samples, now we have 2m+n samples in the
population from which we need to draw a
reasonable number of samples

Why is this not straightforward? Let us see!
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v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

For simplicity, first let us just focus on the
visible variables (V ∈ 2m) and let us see
what it means to draw samples from P (V )

Well, we know that V = v1, v2, . . . , vm where
each vi ∈ {0, 1}
Suppose we decide to approximate the sum
by 10K samples instead of the full 2m

samples

It is easy to create these samples by
assigning values to each vi

For example,
V = 11111 . . . 11111, V = 00000 . . . 0000, V =
00110011 . . . 00110011, . . . V = 0101 . . . 0101
are all samples from this population

So which samples do we consider ?
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Likely

Unlikely

Well, that’s where the catch is!

Unlike, our population analogy, here we
cannot assume that every sample is equally
likely

Why?

(Hint: consider the case that visible
variables correspond to pixels from natural
images)

Clearly some images are more likely than the
others!

Hence, we cannot assume that all samples
from the population (V ∈ 2m) are equally
likely
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Uniform distribution

Multimodal distribution

Let us see this in more detail

In our analogy, every person was equally
likely so we could just sample people
uniformly randomly

However, now if we sample people uniformly
randomly then we will not get the true
picture of the expected value

We need to draw more samples from the high
probability region and fewer samples from
the low probability region

In other words each sample needs to be
drawn in proportion to its probability and
not uniformly
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∂L (θ|V )

∂wij
= Ep(H|V )[vihj ]− Ep(V,H)[vihj ]

Z =
∑
V

∑
H

(∏
i

∏
j

φij(vi, hj)

∏
i

ψi(vi)
∏
j

ξj(hj)
)

That is where the problem lies!

To draw a sample (V,H), we need to know
its probability P (V,H)

And of course, we also need this P (V,H)to
compute the expectation

But, unfortunately computing P (V,H) is
intractable because of the partition function
Z

Hence, approximating the summation by
using a few samples is not straightforward!
(or rather drawing a few samples from the
distribution is hard!)
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intractable because of the partition function
Z

Hence, approximating the summation by
using a few samples is not straightforward!
(or rather drawing a few samples from the
distribution is hard!)
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The story so far

Conclusion: Okay, I get it that drawing samples from this distribution P is
hard.

Question: Is it possible to draw samples from an easier distribution (say, Q) as
long as I am sure that if I keep drawing samples from Q eventually my
samples will start looking as if they were drawn from P !

Answer: Well if you can actually prove this then why not? (and that’s what
we do in Gibbs Sampling)
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