Module 2.1: Biological Neurons

Artificial Neuron

• The most fundamental unit of a deep neural network is called an *artificial* neuron

Artificial Neuron

- The most fundamental unit of a deep neural network is called an *artificial* neuron
- Why is it called a neuron? Where does the inspiration come from?

Artificial Neuron

- The most fundamental unit of a deep neural network is called an *artificial* neuron
- Why is it called a neuron? Where does the inspiration come from?
- The inspiration comes from biology (more specifically, from the *brain*)

Artificial Neuron

- The most fundamental unit of a deep neural network is called an *artificial* neuron
- Why is it called a neuron? Where does the inspiration come from?
- The inspiration comes from biology (more specifically, from the *brain*)
- biological neurons = neural cells = neural processing units

Artificial Neuron

- The most fundamental unit of a deep neural network is called an *artificial* neuron
- Why is it called a neuron? Where does the inspiration come from?
- The inspiration comes from biology (more specifically, from the *brain*)
- biological neurons = neural cells = neural processing units
- We will first see what a biological neuron looks like ...

Biological Neurons*

^{*}Image adapted from

Biological Neurons*

• dendrite: receives signals from other neurons

^{*}Image adapted from

Biological Neurons*

- dendrite: receives signals from other neurons
- synapse: point of connection to other neurons

^{*}Image adapted from

Biological Neurons*

- dendrite: receives signals from other neurons
- synapse: point of connection to other neurons
- soma: processes the information

^{*}Image adapted from

Biological Neurons*

- dendrite: receives signals from other neurons
- synapse: point of connection to other neurons
- soma: processes the information
- axon: transmits the output of this neuron

^{*}Image adapted from

• Let us see a very cartoonish illustration of how a neuron works

- Let us see a very cartoonish illustration of how a neuron works
- Our sense organs interact with the outside world

- Let us see a very cartoonish illustration of how a neuron works
- Our sense organs interact with the outside world
- They relay information to the neurons

- Let us see a very cartoonish illustration of how a neuron works
- Our sense organs interact with the outside world
- They relay information to the neurons
- The neurons (may) get activated and produces a response (laughter in this case)

• Of course, in reality, it is not just a single neuron which does all this

- Of course, in reality, it is not just a single neuron which does all this
- There is a massively parallel interconnected network of neurons

- Of course, in reality, it is not just a single neuron which does all this
- There is a massively parallel interconnected network of neurons
- The sense organs relay information to the lowest layer of neurons

- Of course, in reality, it is not just a single neuron which does all this
- There is a massively parallel interconnected network of neurons
- The sense organs relay information to the lowest layer of neurons
- Some of these neurons may fire (in red) in response to this information and in turn relay information to other neurons they are connected to

- Of course, in reality, it is not just a single neuron which does all this
- There is a massively parallel interconnected network of neurons
- The sense organs relay information to the lowest layer of neurons
- Some of these neurons may fire (in red) in response to this information and in turn relay information to other neurons they are connected to
- These neurons may also fire (again, in red) and the process continues

- Of course, in reality, it is not just a single neuron which does all this
- There is a massively parallel interconnected network of neurons
- The sense organs relay information to the lowest layer of neurons
- Some of these neurons may fire (in red) in response to this information and in turn relay information to other neurons they are connected to
- These neurons may also fire (again, in red) and the process continues eventually resulting in a response (laughter in this case)

- Of course, in reality, it is not just a single neuron which does all this
- There is a massively parallel interconnected network of neurons
- The sense organs relay information to the lowest layer of neurons
- Some of these neurons may fire (in red) in response to this information and in turn relay information to other neurons they are connected to
- These neurons may also fire (again, in red) and the process continues eventually resulting in a response (laughter in this case)
- An average human brain has around 10¹¹ (100 billion) neurons!

• This massively parallel network also ensures that there is division of work

- This massively parallel network also ensures that there is division of work
- Each neuron may perform a certain role or respond to a certain stimulus

A simplified illustration

- This massively parallel network also ensures that there is division of work
- Each neuron may perform a certain role or respond to a certain stimulus

A simplified illustration

- This massively parallel network also ensures that there is division of work
- Each neuron may perform a certain role or respond to a certain stimulus

A simplified illustration

- This massively parallel network also ensures that there is division of work
- Each neuron may perform a certain role or respond to a certain stimulus

A simplified illustration

- This massively parallel network also ensures that there is division of work
- Each neuron may perform a certain role or respond to a certain stimulus

A simplified illustration

- This massively parallel network also ensures that there is division of work
- Each neuron may perform a certain role or respond to a certain stimulus

• The neurons in the brain are arranged in a hierarchy

[picture from Simon Thorpe]

- The neurons in the brain are arranged in a hierarchy
- We illustrate this with the help of visual cortex (part of the brain) which deals with processing visual information

[picture from Simon Thorpe]

- The neurons in the brain are arranged in a hierarchy
- We illustrate this with the help of visual cortex (part of the brain) which deals with processing visual information
- Starting from the retina, the information is relayed to several layers (follow the arrows)

[picture from Simon Thorpe]

- The neurons in the brain are arranged in a hierarchy
- We illustrate this with the help of visual cortex (part of the brain) which deals with processing visual information
- Starting from the retina, the information is relayed to several layers (follow the arrows)
- We observe that the layers V1, V2 to AIT form a hierarchy (from identifying simple visual forms to high level objects)

Layer 1: detect edges & corners

[picture from Simon Thorpe]

Sample illustration of hierarchical processing*

^{*}Idea borrowed from Hugo Larochelle's lecture slides

[picture from Simon Thorpe]

Sample illustration of hierarchical processing*

^{*}Idea borrowed from Hugo Larochelle's lecture slides

Sample illustration of hierarchical processing*

 $^{^*}$ Idea borrowed from Hugo Larochelle's lecture slides

Disclaimer

- I understand very little about how the brain works!
- What you saw so far is an overly simplified explanation of how the brain works!
- But this explanation suffices for the purpose of this course!