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Module 2.2: McCulloch Pitts Neuron

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2



2/9

x1 x2 .. .. xn

∈ {0, 1}

y ∈ {0, 1}

g

f

McCulloch (neuroscientist) and Pitts (logi-
cian) proposed a highly simplified computa-
tional model of the neuron (1943)

g aggregates the inputs

and the function f
takes a decision based on this aggregation

The inputs can be excitatory or inhibitory

y = 0 if any xi is inhibitory, else

g(x1, x2, ..., xn) = g(x) =

n∑
i=1

xi

y = f(g(x)) = 1 if g(x) ≥ θ
= 0 if g(x) < θ

θ is called the thresholding parameter

This is called Thresholding Logic
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Let us implement some boolean functions using this McCulloch Pitts (MP) neuron
...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2



4/9

x1 x2 x3

y ∈ {0, 1}

θ

A McCulloch Pitts unit
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x1 x2 x3
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θ

A McCulloch Pitts unit

x1 x2 x3

y ∈ {0, 1}

3

AND function
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θ

A McCulloch Pitts unit

x1 x2

y ∈ {0, 1}

1

x1 AND !x2
∗

∗circle at the end indicates inhibitory input: if any inhibitory input is 1 the output will be 0

x1 x2 x3
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3

AND function

x1 x2 x3
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1

OR function
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Can any boolean function be represented using a McCulloch Pitts unit ?

Before answering this question let us first see the geometric interpretation of a
MP unit ...
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x1 x2

y ∈ {0, 1}

1

OR function
x1 + x2 =

∑2
i=1 xi ≥ 1

A single MP neuron splits the input points (4
points for 2 binary inputs) into two halves

Points lying on or above the line
∑n

i=1 xi−θ =
0 and points lying below this line

In other words, all inputs which produce an
output 0 will be on one side (

∑n
i=1 xi < θ)

of the line and all inputs which produce an
output 1 will lie on the other side (

∑n
i=1 xi ≥

θ) of this line

Let us convince ourselves about this with a
few more examples (if it is not already clear
from the math)
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x1 x2 x3

y ∈ {0, 1}

OR1

What if we have more than 2 inputs?

Well, instead of a line we will have a
plane

For the OR function, we want a plane
such that the point (0,0,0) lies on one
side and the remaining 7 points lie on
the other side of the plane
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The story so far ...

A single McCulloch Pitts Neuron can be used to represent boolean functions
which are linearly separable

Linear separability (for boolean functions) : There exists a line (plane) such
that all inputs which produce a 1 lie on one side of the line (plane) and all
inputs which produce a 0 lie on other side of the line (plane)
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