
1/9

Module 2.3: Perceptron
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The story ahead ...

What about non-boolean (say, real) inputs ?

Do we always need to hand code the threshold ?

Are all inputs equal ? What if we want to assign more weight (importance) to
some inputs ?

What about functions which are not linearly separable ?
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x1 x2 .. .. xn

y

w1 w2 .. .. wn

Frank Rosenblatt, an American psychologist,
proposed the classical perceptron model
(1958)

A more general computational model than
McCulloch–Pitts neurons

Main differences: Introduction of numer-
ical weights for inputs and a mechanism for
learning these weights

Inputs are no longer limited to boolean values

Refined and carefully analyzed by Minsky and
Papert (1969) - their model is referred to as
the perceptron model here
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x1 x2 .. .. xn

x0 = 1

y

w1 w2 .. .. wn

w0 = −θ

A more accepted convention,

y = 1 if
n∑

i=0

wi ∗ xi ≥ 0

= 0 if
n∑

i=0

wi ∗ xi < 0

where, x0 = 1 and w0 = −θ

y = 1 if
n∑

i=1

wi ∗ xi ≥ θ

= 0 if
n∑

i=1

wi ∗ xi < θ

Rewriting the above,

y = 1 if

n∑
i=1

wi ∗ xi − θ ≥ 0

= 0 if

n∑
i=1

wi ∗ xi − θ < 0
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We will now try to answer the following questions:

Why are we trying to implement boolean functions?

Why do we need weights ?

Why is w0 = −θ called the bias ?
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x0 = 1 x1 x2 x3

y

w0 = −θ w1 w2 w3

x1 = isActorDamon

x2 = isGenreThriller

x3 = isDirectorNolan

Consider the task of predicting whether we would like
a movie or not

Suppose, we base our decision on 3 inputs (binary, for
simplicity)

Based on our past viewing experience (data), we may
give a high weight to isDirectorNolan as compared to
the other inputs

Specifically, even if the actor is not Matt Damon and
the genre is not thriller we would still want to cross
the threshold θ by assigning a high weight to isDirect-
orNolan
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x0 = 1 x1 x2 x3

y

w0 = −θ w1 w2 w3

x1 = isActorDamon

x2 = isGenreThriller

x3 = isDirectorNolan

w0 is called the bias as it represents the prior (preju-
dice)

A movie buff may have a very low threshold and may
watch any movie irrespective of the genre, actor, dir-
ector [θ = 0]

On the other hand, a selective viewer may only watch
thrillers starring Matt Damon and directed by Nolan
[θ = 3]

The weights (w1, w2, ..., wn) and the bias (w0) will de-
pend on the data (viewer history in this case)
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What kind of functions can be implemented using the perceptron? Any difference
from McCulloch Pitts neurons?
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McCulloch Pitts Neuron
(assuming no inhibitory inputs)

y = 1 if

n∑
i=0

xi ≥ θ

= 0 if

n∑
i=0

xi < θ

Perceptron

y = 1 if
n∑

i=0

wi ∗ xi ≥ θ

= 0 if

n∑
i=0

wi ∗ xi < θ

From the equations it should be clear that
even a perceptron separates the input space
into two halves

All inputs which produce a 1 lie on one side
and all inputs which produce a 0 lie on the
other side

In other words, a single perceptron can only
be used to implement linearly separable func-
tions

Then what is the difference?

The weights (in-
cluding threshold) can be learned and the in-
puts can be real valued

We will first revisit some boolean functions
and then see the perceptron learning al-
gorithm (for learning weights)
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x1 x2 OR

0 0

0 w0 +
∑2

i=1wixi < 0

1 0 1 w0 +
∑2

i=1wixi ≥ 0

0 1 1 w0 +
∑2

i=1wixi ≥ 0

1 1 1 w0 +
∑2

i=1wixi ≥ 0

w0 + w1 · 0 + w2 · 0 < 0 =⇒ w0 < 0

w0 + w1 · 0 + w2 · 1 ≥ 0 =⇒ w2 > −w0

w0 + w1 · 1 + w2 · 0 ≥ 0 =⇒ w1 > −w0

w0 + w1 · 1 + w2 · 1 ≥ 0 =⇒ w1 + w2 > −w0

One possible solution to this set of inequalities
is w0 = −1, w1 = 1.1, , w2 = 1.1 (and various
other solutions are possible)

x1

x2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

−1 + 1.1x1 + 1.1x2 = 0

Note that we can come up
with a similar set of inequal-
ities and find the value of θ
for a McCulloch Pitts neuron
also

(Try it!)
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