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Module 2.5: Perceptron Learning Algorithm
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We will now see a more principled approach for learning these weights and
threshold but before that let us answer this question...

Apart from implementing boolean functions (which does not look very interest-
ing) what can a perceptron be used for ?

Our interest lies in the use of perceptron as a binary classifier. Let us see what
this means...
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x0 = 1 x1 x2 .. .. xn

y

w0 = −θ w1 w2 .. .. wn

Let us reconsider our problem of deciding
whether to watch a movie or not

Suppose we are given a list of m movies and
a label (class) associated with each movie in-
dicating whether the user liked this movie or
not : binary decision

Further, suppose we represent each movie
with n features (some boolean, some real val-
ued)

We will assume that the data is linearly sep-
arable and we want a perceptron to learn how
to make this decision

In other words, we want the perceptron to find
the equation of this separating plane (or find
the values of w0, w1, w2, .., wm)
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Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
Initialize w randomly;
while !convergence do

Pick random x ∈ P ∪N ;
if x ∈ P and

∑n
i=0wi ∗ xi < 0 then

w = w + x ;

end
if x ∈ N and

∑n
i=0wi ∗ xi ≥ 0 then

w = w − x ;

end

end
//the algorithm converges when all the
inputs are classified correctly

Why would this work ?

To understand why this works
we will have to get into a bit of
Linear Algebra and a bit of geo-
metry...
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Consider two vectors w and x

We can thus rewrite the perceptron
rule as

We are interested in finding the line
wTx = 0 which divides the input
space into two halves

Every point (x) on this line satisfies
the equation wTx = 0

What can you tell about the angle (α)
between w and any point (x) which
lies on this line ?

The angle is 90◦ (∵ cosα = wT x
||w||||x|| =

0)

Since the vector w is perpendicular to
every point on the line it is actually
perpendicular to the line itself
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Consider some points (vectors) which lie in
the positive half space of this line (i.e., wTx ≥
0)

What will be the angle between any such vec-
tor and w ?

What about points (vectors) which lie in the
negative half space of this line (i.e., wTx < 0)

What will be the angle between any such vec-
tor and w ?

Of course, this also follows from the formula
(cosα = wT x

||w||||x||)

Keeping this picture in mind let us revisit the
algorithm

x1

x2

p1

p2

p3

n1

n2 n3

w

wTx = 0
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What will be the angle between any such vec-
tor and w ? Obviously, greater than 90◦

Of course, this also follows from the formula
(cosα = wT x

||w||||x||)

Keeping this picture in mind let us revisit the
algorithm
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Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
Initialize w randomly;
while !convergence do

Pick random x ∈ P ∪N ;
if x ∈ P and w.x < 0 then

w = w + x ;
end
if x ∈ N and w.x ≥ 0 then

w = w − x ;
end

end
//the algorithm converges when all the
inputs are classified correctly

cosα =
wTx

||w||||x||

For x ∈ P if w.x < 0 then it
means that the angle (α) between
this x and the current w is
greater than 90◦

(but we want α
to be less than 90◦)

What happens to the new angle
(αnew) when wnew = w + x

cos(αnew) ∝ wnew
Tx

∝ (w + x)Tx

∝ wTx + xTx

∝ cosα+ xTx

cos(αnew) > cosα

Thus αnew will be less than α and
this is exactly what we want
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We will now see this algorithm in action for a toy dataset
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x1

x2

p1

p2

p3

n1

n2 n3

We initialized w to a random value

We observe that currently, w · x < 0 (∵ angle
> 90◦) for all the positive points and w ·x ≥ 0
(∵ angle < 90◦) for all the negative points
(the situation is exactly oppsite of what we
actually want it to be)

We now run the algorithm by randomly going
over the points

The algorithm has converged
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