Module 2.6: Proof of Convergence
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o Now that we have some faith and intuition about why the algorithm works, we
will see a more formal proof of convergence ...
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers wg, w1, ..., w, exist such that
every point (z1, 2, ..., xy) € P satisfies Y 1 | w; % z; > wy
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers wg, w1, ..., w, exist such that
every point (z1, 2, ..., x,) € P satisfies Y . ; w; * x; > wo and every point
(z1,22,...,2n) € N satisfies Y 1 | w; * x; < wo.
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers wg, w1, ..., w, exist such that
every point (z1, 2, ..., x,) € P satisfies Y . ; w; * x; > wo and every point
(z1,22,...,2n) € N satisfies Y 1 | w; * x; < wo.

Proposition:
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers wg, w1, ..., w, exist such that
every point (z1, 2, ..., x,) € P satisfies Y . ; w; * x; > wo and every point
(z1,22,...,2n) € N satisfies Y 1 | w; * x; < wo.

Proposition: If the sets P and N are finite and linearly separable,
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers wg, w1, ..., w, exist such that
every point (z1, 2, ..., x,) € P satisfies Y . ; w; * x; > wo and every point
(z1,22,...,2n) € N satisfies Y 1 | w; * x; < wo.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector w; a finite number of times.
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers wg, w1, ..., w, exist such that
every point (z1, 2, ..., x,) € P satisfies Y . ; w; * x; > wo and every point
(z1,22,...,2n) € N satisfies Y 1 | w; * x; < wo.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector w; a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other,
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers wg, w1, ..., w, exist such that
every point (z1, 2, ..., x,) € P satisfies Y . ; w; * x; > wo and every point
(z1,22,...,2n) € N satisfies Y 1 | w; * x; < wo.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector w; a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wy is found after a finite number of steps ¢ which can separate the two sets.
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Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers wg, w1, ..., w, exist such that
every point (z1, 2, ..., x,) € P satisfies Y . ; w; * x; > wo and every point
(z1,22,...,2n) € N satisfies Y 1 | w; * x; < wo.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector w; a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wy is found after a finite number of steps ¢ which can separate the two sets.

Proof: On the next slide
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Setup:

olf x € N then -x € P
wle <0 = wl(~z) >

(
0)
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Setup:
eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
@ We can thus consider a single
set P = PU N~ and for
every element p € P’ ensure
that w’p > 0
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Setup:
oIf z € N then -z € P (- Algorithm: Perceptron Learning Algorithm

wlz <0 = wl(—2)>0) P+« inputs with label 1;

@ We can thus consider a single
set P/ = PUN~ and for
every element p € P’ ensure
that w’p > 0
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Setup:
oIf z € N then -z € P (- Algorithm: Perceptron Learning Algorithm

wlz <0 = wl(—2)>0) P+« inputs with label 1;
N < inputs with label 0;

@ We can thus consider a single
set P/ = PUN~ and for
every element p € P’ ensure
that w’p > 0
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Setup:
eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
@ We can thus consider a single
set P = PU N~ and for
every element p € P’ ensure
that w’p > 0

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;
N < inputs with label 0;
N~ contains negations of all points in N;
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Setup:
eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
@ We can thus consider a single
set P = PU N~ and for
every element p € P’ ensure
that w’p > 0

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;

N < inputs with label 0;

N~ contains negations of all points in N;
P+ PUNT;
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Setup:
eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
@ We can thus consider a single
set P = PU N~ and for
every element p € P’ ensure
that w’p > 0

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;

N < inputs with label 0;

N~ contains negations of all points in N;
P+ PUNT;

Initialize w randomly;
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Setup:
eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
@ We can thus consider a single
set P = PU N~ and for
every element p € P’ ensure
that w’p > 0

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;

N < inputs with label 0;

N~ contains negations of all points in N;
P+ PUNT;

Initialize w randomly;

while !convergence do

end
//the algorithm converges when all the inputs are
classified correctly
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Setup:
eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
@ We can thus consider a single
set P = PU N~ and for
every element p € P’ ensure
that w’p > 0

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;
N < inputs with label 0;
N~ contains negations of all points in N;
P+ PUNT;
Initialize w randomly;
while !convergence do
Pick random p € P’ ;

end
//the algorithm converges when all the inputs are
classified correctly
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Setup:
eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
@ We can thus consider a single
set P = PU N~ and for
every element p € P’ ensure
that w’p > 0

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;
N < inputs with label 0;
N~ contains negations of all points in N;
P+ PUNT;
Initialize w randomly;
while !convergence do
Pick random p € P’ ;

if w.p < 0 then
end
end
//the algorithm converges when all the inputs are
classified correctly
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Setup:
eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
@ We can thus consider a single
set P = PU N~ and for
every element p € P’ ensure
that w’p > 0

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;
N < inputs with label 0;
N~ contains negations of all points in N;
P+ PUNT;
Initialize w randomly;
while !convergence do
Pick random p € P’ ;

if w.p < 0 then
| wew+p:
end
end
//the algorithm converges when all the inputs are
classified correctly
//notice that we do not need the other if condition
because by construction we want all points in P’ to
lie in the positive half space w.p > 0
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Setup:

eIf x € N then -z € P (-
wle <0 = wl(—z) >0)

@ We can thus consider a single
set P/ = P U N~ and for
every element p € P’ ensure
that w’p > 0

o Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution . i f wTII%\I >
0 then w’p > 0)

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;
N < inputs with label 0;
N~ contains negations of all points in N;
P+ PUNT;
Initialize w randomly;
while !convergence do
Pick random p € P’ ;

if w.p < 0 then
| wew+p:
end
end
//the algorithm converges when all the inputs are
classified correctly
//notice that we do not need the other if condition
because by construction we want all points in P’ to
lie in the positive half space w.p > 0
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Setup:

eIf x € N then -z € P (-
wle <0 = wl(—z) >0)

@ We can thus consider a single
set P/ = P U N~ and for
every element p € P’ ensure
that w’p > 0

o Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution . i f wTII%\I >
0 then w’p > 0)

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;
N < inputs with label 0;
N~ contains negations of all points in N;
P+ PUNT;
Initialize w randomly;
while !convergence do
Pick random p € P’ ;
p < qpp (so now||pl| =1) ;

if W.IH)pl 0 then
| w-w+p:
end

end

//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P’ to
lie in the positive half space w.p > 0
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Setup:

eIf x € N then -z € P (-
wle <0 = wl(—z) >0)
We can thus consider a single
set P/ = PUN~ and for
every element p € P’ ensure
that w’p > 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution . i f wTII%\I >
0 then w’p > 0)

Let w* be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Mitesh M. Khapra

Algorithm: Perceptron Learning Algorithm

P« inputs with label 1;
N < inputs with label 0;
N~ contains negations of all points in N;
P+ PUNT;
Initialize w randomly;
while !convergence do
Pick random p € P’ ;

p e (s0mowlpl| = 1) ;
if w.p < 0 then
| w-w+p:
end
end

//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P’ to
lie in the positive half space w.p > 0
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Observations: Proof:

e w* is some optimal solution
which exists but we don’t know
what it is
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1
w* - w
cosf = a7
|[wea]|
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1
w* - w
cosf = a7
|[wea]|

Numerator = w™ - w1
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1
w* - w
cosf = a7
|[wea]|

Numerator = w* - w1 = w* - (wy + p;)
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1
w* - w
cosf = e e
|[wetr]]
Numerator = w* - wiy; = w* - (W + p;)

=w" - w +w* - p;
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1
w* - w
cosf = e e
|[wetr]]
Numerator = w* - wiy; = w* - (W + p;)
=w" - wg +w*p;

>w' w40 (6 = min{w® - p;|Vi
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is

o We make a correction wiy1 = wy + p;
o Let 5 be the angle between w* and w1
w* - w
cosf = -l
w1
Numerator = w* - w1 = w* - (wy + p;)
=w" - w +w* - p;
w*we+ 6 (0 = min{w” - p;|Vi
w* - (w1 +pj) +0

AV
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1
cosf = W' Wy
|[wea]]
Numerator = w* - wiy; = w* - (W + p;)
=w" - wg +w*p;
w*we+ 6 (0 = min{w” - p;|Vi

w* - (wi—1 +pj) +6
w*

(VAR VARV,

‘w1 +wpi+0
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1

Numerator = w* - w1 = w* - (wy + p;)

w* - w +w* - p;

w*we+ 6 (0 = min{w” - p;|Vi
w* - (w1 +pj) +0

W' wi +wtpi+0

w* w1 + 20

(AR VAR AVARLY,
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;
e We do not make a correction o Let 5 be the angle between w* and w1
at every time-step w* Wi
cosf =
|[wetr]]

Numerator = w* - w1 = w* - (wy + p;)

w* - wy +w* - p;

w*we+ 6 (0 = min{w” - p;|Vi
w* - (w1 +pj) +0

W' wi +wtpi+0

w* w1 + 20

(AR VAR AVARLY,
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

e We do not make a correction o Let 5 be the angle between w* and w1
at every time-step Ww* - Wi

e We make a correction only if cosf = wis]|

T, .. ;
w' - p; <0 at that time step Numerator = w* - w1 = w* - (wy + p;)

w* - wy +w* - p;

w*we+ 6 (0 = min{w” - p;|Vi
w* - (w1 +pj) +0

W' wi +wtpi+0

w* w1 + 20

(AR VAR AVARLY,
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Observations: Proof:

e w* is some optimal solution o Now suppose at time step ¢ we inspected the
which exists but we don’t know point p; and found that w” - p; <0
what it is o We make a correction wiy1 = wy + p;

e We do not make a correction o Let 5 be the angle between w* and w1
at every time-step Ww* - Wi

e We make a correction only if cosf = wis]|

T, .. ;
w' - p; <0 at that time step Numerator = w* - w1 = w* - (wy + p;)

@ So at time-step t we would
have made only k (< t) cor-
rections

w* - wy +w* - p;

w*we+ 6 (0 = min{w” - p;|Vi
w* - (w1 +pj) +0

W' wi +wtpi+0

w* w1 + 20

(AR VAR AVARLY,
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Observations:

(]

w* is some optimal solution

which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
w’ - p; <0 at that time step

So at time-step t we would
have made only k (< t) cor-
rections

Every time we make a correc-
tion a quantity ¢ gets added to
the numerator

Proof:

o Now suppose at time step t we inspected the
point p; and found that w” - p; <0

o We make a correction wiy1 = wy + p;

o Let 5 be the angle between w* and w1

Numerator = w* - w1 = w* - (wy + p;)

w* - wy +w* - p;

w*we+ 6 (0 = min{w” - p;|Vi
w* - (w1 +pj) +0

W' wi +wtpi+0

w* w1 + 20

(AR VAR AVARLY,
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Observations:

(]

w* is some optimal solution

which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
w’ - p; <0 at that time step

So at time-step t we would
have made only k (< t) cor-
rections

Every time we make a correc-
tion a quantity ¢ gets added to
the numerator

So by time-step t, a quantity
ko gets added to the numer-

Proof:

o Now suppose at time step t we inspected the
point p; and found that w” - p; <0

o We make a correction wiy1 = wy + p;
o Let 5 be the angle between w* and w1
cosf3 = W' Wy
|[wetr]]

Numerator = w* - w1 = w* - (wy + p;)
=w* - w +w* - p;
>w' w40 (6 = min{w® - p;|Vi
> w* - (wi—1 +pj)+0
>w* - wi— +w - pj+0
>w - wi—g + 20
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(]

w* is some optimal solution

which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
w’ - p; <0 at that time step

So at time-step t we would
have made only k (< t) cor-
rections

Every time we make a correc-
tion a quantity ¢ gets added to
the numerator

So by time-step t, a quantity
ko gets added to the numer-

Proof:

Observations:

o Now suppose at time step t we inspected the
point p; and found that w” - p; <0

o We make a correction wiy1 = wy + p;
o Let 5 be the angle between w* and w1
cosf3 = W' Wy
|[wea]|

Numerator = w* - w1 = w* - (wy + p;)
=w" - w+w*-p;
>w' w40 (6 = min{w® - p;|Vi
> w* - (wi—1 +pj)+0
>w* - wi— +wpj+0
>w - wi—g + 20
>w* - wo+ (k)d  (By induction)
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

cosf = O W (by definition)

|[wig1]]
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)
w* s W41 .
cosfp = —— (by definition)
|[wig |

Numerator > w* - wy + kd  (proved by induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2



Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)
w* s W41 .
cosfp = —— (by definition)
|[wig |

Numerator > w* - wy + kd  (proved by induction)

Denominator® = ||wy1||*
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® = ||wy1||*

= (wi + pi) - (Wi + i)
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® = ||wy1||*
= (we +pi) - (we + pi)
= [Jwel® + 2w - pi + [Ipil|?)
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® = ||wy1||*
= (we +pi) - (we + pi)
= [l + 2we - pi + [|pil|*)
< [Jwel? +[lpil > (. we - pi < 0)
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® = ||wy1||*
= (we +pi) - (we + pi)
= [l + 2we - pi + [|pil|*)
< [Jwel? +[lpil > (. we - pi < 0)
<lwilP?+1 ¢ lpill* = 1)
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® = ||wy1||*
= (we +pi) - (we + pi)
= [l + 2we - pi + [|pil|*)
< [Jwel? +[lpil > (. we - pi < 0)
<lwilP?+1 ¢ lpill* = 1)
< (w1 |* +1) +1
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® = ||wy1||*
= (we +pi) - (we + pi)
= [l + 2we - pi + [|pil|*)
< [Jwel? +[lpil > (. we - pi < 0)
<lwilP?+1 ¢ lpill* = 1)
< (w1 |* +1) +1
< w—a|* +2
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)
w* - Wit
|[wig |
Numerator > w* - wy + kd  (proved by induction)

cosf = (by definition)

Denominator® = ||wy1||*
= (wr + pi) - (wr + pi)
= [lwell* + 2wr - pi + [[pil]*)
< lwel * + [pil* ¢ we - pi <0)
<lwel P+ 1 (o flpill? = 1)
< (Jlwe—|P+1) +1
< J|we|* + 2
< ||wo|[* + (k) (By same observation that we made about J)
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)
w* s W41 .
cosfp = —— (by definition)
|[wig |

Numerator > w* - wy + kd  (proved by induction)

A

Denominator® < ||wo||> + k  (By same observation that we made about 0)
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

[lwitall
Numerator > w* - wo + kd  (proved by induction)
Denominator® < ||wo||> + k  (By same observation that we made about 0)
w* - wgy + ko

Vwol* + &

cosf >
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® < ||wo||> + k  (By same observation that we made about 0)
w* - wgy + ko

Vwol* + &

e cosf thus grows proportional to vk

cosf >
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® < ||wo||> + k  (By same observation that we made about 0)
w* - wgy + ko

Vwol* + &

e cosf thus grows proportional to vk

cosf >

e As k (number of corrections) increases cosf can become arbitrarily large
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® < ||wo||> + k  (By same observation that we made about 0)
w* - wgy + ko

Vwol* + &

e cosf thus grows proportional to vk

cosf >

e As k (number of corrections) increases cosf can become arbitrarily large

e But since cosf < 1, k must be bounded by a maximum number
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Proof (continued:)

So far we have, wl p; <0 (and hence we made the correction)

*
W - W1

cosf = (by definition)

wesal]
Numerator > w* - wy + kd  (proved by induction)

Denominator® < ||wo||> + k  (By same observation that we made about 0)
w* - wgy + ko

Vwol* + &

e cosf thus grows proportional to vk

cosf >

As k (number of corrections) increases cosf can become arbitrarily large

But since cosf < 1, k must be bounded by a maximum number

e Thus, there can only be a finite number of corrections (k) to w and the algorithm
will converge!
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Coming back to our questions ...

e What about non-boolean (say, real) inputs?
o Do we always need to hand code the threshold?
o Are all inputs equal? What if we want to assign more weight (importance) to

some inputs?

e What about functions which are not linearly separable ?
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Coming back to our questions ...

e What about non-boolean (say, real) inputs? Real valued inputs are allowed in
perceptron

o Do we always need to hand code the threshold?

o Are all inputs equal? What if we want to assign more weight (importance) to
some inputs?

e What about functions which are not linearly separable ?
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Coming back to our questions ...

e What about non-boolean (say, real) inputs? Real valued inputs are allowed in
perceptron

o Do we always need to hand code the threshold? No, we can learn the threshold

o Are all inputs equal? What if we want to assign more weight (importance) to
some inputs?

e What about functions which are not linearly separable ?
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Coming back to our questions ...

e What about non-boolean (say, real) inputs? Real valued inputs are allowed in
perceptron

o Do we always need to hand code the threshold? No, we can learn the threshold

o Are all inputs equal? What if we want to assign more weight (importance) to
some inputs? A perceptron allows weights to be assigned to inputs

e What about functions which are not linearly separable ?
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Coming back to our questions ...

e What about non-boolean (say, real) inputs? Real valued inputs are allowed in
perceptron

o Do we always need to hand code the threshold? No, we can learn the threshold

o Are all inputs equal? What if we want to assign more weight (importance) to
some inputs? A perceptron allows weights to be assigned to inputs

e What about functions which are not linearly separable 7 Not possible with a
single perceptron but we will see how to handle this ..

v
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