
1/10

Module 2.6: Proof of Convergence

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

2/10

Now that we have some faith and intuition about why the algorithm works, we
will see a more formal proof of convergence ...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if

n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist

such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0

and every point
(x1, x2, ..., xn) ∈ N satisfies

∑n
i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition:

If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable,

the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times.

In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other,

a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

3/10

Theorem

Definition: Two sets P and N of points in an n-dimensional space are called
absolutely linearly separable if n + 1 real numbers w0, w1, ..., wn exist such that
every point (x1, x2, ..., xn) ∈ P satisfies

∑n
i=1wi ∗ xi > w0 and every point

(x1, x2, ..., xn) ∈ N satisfies
∑n

i=1wi ∗ xi < w0.

Proposition: If the sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector wt a finite number of times. In other
words: if the vectors in P and N are tested cyclically one after the other, a weight
vector wt is found after a finite number of steps t which can separate the two sets.

Proof: On the next slide

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;

N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;

N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;

P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;

Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;

while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;

p← p
||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;

p← p
||p|| (so now,||p|| = 1) ;

if w.p < 0 then

w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;

p← p
||p|| (so now,||p|| = 1) ;

if w.p < 0 then
w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;

p← p
||p|| (so now,||p|| = 1) ;

if w.p < 0 then
w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then
w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

4/10

Setup:

If x ∈ N then -x ∈ P (∵
wTx < 0 =⇒ wT (−x) ≥ 0)

We can thus consider a single
set P ′ = P ∪ N− and for
every element p ∈ P ′ ensure
that wT p ≥ 0

Further we will normalize all
the p’s so that ||p|| = 1 (no-
tice that this does not affect
the solution ∵ if wT p

||p|| ≥
0 then wT p ≥ 0)

Let w∗ be the normalized
solution vector (we know one
exists as the data is linearly
separable)

Algorithm: Perceptron Learning Algorithm

P ← inputs with label 1;
N ← inputs with label 0;
N−contains negations of all points in N;
P ′ ← P ∪N−;
Initialize w randomly;
while !convergence do

Pick random p ∈ P ′ ;
p← p

||p|| (so now,||p|| = 1) ;

if w.p < 0 then
w = w + p ;

end

end
//the algorithm converges when all the inputs are
classified correctly

//notice that we do not need the other if condition
because by construction we want all points in P ′ to
lie in the positive half space w.p ≥ 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1

= w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1

= w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1

= w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1

= w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||

Numerator = w∗ · wt+1

= w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1

= w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi

≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})

≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

5/10

Observations:

w∗ is some optimal solution
which exists but we don’t know
what it is

We do not make a correction
at every time-step

We make a correction only if
wT · pi ≤ 0 at that time step

So at time-step t we would
have made only k (≤ t) cor-
rections

Every time we make a correc-
tion a quantity δ gets added to
the numerator

So by time-step t, a quantity
kδ gets added to the numer-
ator

Proof:

Now suppose at time step t we inspected the
point pi and found that wT · pi ≤ 0

We make a correction wt+1 = wt + pi

Let β be the angle between w∗ and wt+1

cosβ =
w∗ · wt+1

||wt+1||
Numerator = w∗ · wt+1 = w∗ · (wt + pi)

= w∗ · wt + w∗ · pi
≥ w∗ · wt + δ (δ = min{w∗ · pi|∀i})
≥ w∗ · (wt−1 + pj) + δ

≥ w∗ · wt−1 + w∗ · pj + δ

≥ w∗ · wt−1 + 2δ

≥ w∗ · w0 + (k)δ (By induction)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)

≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

6/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 = ||wt+1||2

= (wt + pi) · (wt + pi)

= ||wt||2 + 2wt · pi + ||pi||2)
≤ ||wt||2 + ||pi||2 (∵ wt · pi ≤ 0)

≤ ||wt||2 + 1 (∵ ||pi||2 = 1)

≤ (||wt−1||2 + 1) + 1

≤ ||wt−1||2 + 2

≤ ||w0||2 + (k) (By same observation that we made about δ)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

7/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 ≤ ||w0||2 + k (By same observation that we made about δ)

cosβ ≥ w∗ · w0 + kδ√
||w0||2 + k

cosβ thus grows proportional to
√
k

As k (number of corrections) increases cosβ can become arbitrarily large

But since cosβ ≤ 1, k must be bounded by a maximum number

Thus, there can only be a finite number of corrections (k) to w and the algorithm
will converge!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

7/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 ≤ ||w0||2 + k (By same observation that we made about δ)

cosβ ≥ w∗ · w0 + kδ√
||w0||2 + k

cosβ thus grows proportional to
√
k

As k (number of corrections) increases cosβ can become arbitrarily large

But since cosβ ≤ 1, k must be bounded by a maximum number

Thus, there can only be a finite number of corrections (k) to w and the algorithm
will converge!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

7/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 ≤ ||w0||2 + k (By same observation that we made about δ)

cosβ ≥ w∗ · w0 + kδ√
||w0||2 + k

cosβ thus grows proportional to
√
k

As k (number of corrections) increases cosβ can become arbitrarily large

But since cosβ ≤ 1, k must be bounded by a maximum number

Thus, there can only be a finite number of corrections (k) to w and the algorithm
will converge!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

7/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 ≤ ||w0||2 + k (By same observation that we made about δ)

cosβ ≥ w∗ · w0 + kδ√
||w0||2 + k

cosβ thus grows proportional to
√
k

As k (number of corrections) increases cosβ can become arbitrarily large

But since cosβ ≤ 1, k must be bounded by a maximum number

Thus, there can only be a finite number of corrections (k) to w and the algorithm
will converge!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

7/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 ≤ ||w0||2 + k (By same observation that we made about δ)

cosβ ≥ w∗ · w0 + kδ√
||w0||2 + k

cosβ thus grows proportional to
√
k

As k (number of corrections) increases cosβ can become arbitrarily large

But since cosβ ≤ 1, k must be bounded by a maximum number

Thus, there can only be a finite number of corrections (k) to w and the algorithm
will converge!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

7/10

Proof (continued:)

So far we have, wT · pi ≤ 0 (and hence we made the correction)

cosβ =
w∗ · wt+1

||wt+1||
(by definition)

Numerator ≥ w∗ · w0 + kδ (proved by induction)

Denominator2 ≤ ||w0||2 + k (By same observation that we made about δ)

cosβ ≥ w∗ · w0 + kδ√
||w0||2 + k

cosβ thus grows proportional to
√
k

As k (number of corrections) increases cosβ can become arbitrarily large

But since cosβ ≤ 1, k must be bounded by a maximum number

Thus, there can only be a finite number of corrections (k) to w and the algorithm
will converge!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

8/10

Coming back to our questions ...

What about non-boolean (say, real) inputs?

Real valued inputs are allowed in
perceptron

Do we always need to hand code the threshold?

No, we can learn the threshold

Are all inputs equal? What if we want to assign more weight (importance) to
some inputs?

A perceptron allows weights to be assigned to inputs

What about functions which are not linearly separable ?

Not possible with a
single perceptron but we will see how to handle this ..

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

8/10

Coming back to our questions ...

What about non-boolean (say, real) inputs? Real valued inputs are allowed in
perceptron

Do we always need to hand code the threshold?

No, we can learn the threshold

Are all inputs equal? What if we want to assign more weight (importance) to
some inputs?

A perceptron allows weights to be assigned to inputs

What about functions which are not linearly separable ?

Not possible with a
single perceptron but we will see how to handle this ..

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

8/10

Coming back to our questions ...

What about non-boolean (say, real) inputs? Real valued inputs are allowed in
perceptron

Do we always need to hand code the threshold? No, we can learn the threshold

Are all inputs equal? What if we want to assign more weight (importance) to
some inputs?

A perceptron allows weights to be assigned to inputs

What about functions which are not linearly separable ?

Not possible with a
single perceptron but we will see how to handle this ..

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

8/10

Coming back to our questions ...

What about non-boolean (say, real) inputs? Real valued inputs are allowed in
perceptron

Do we always need to hand code the threshold? No, we can learn the threshold

Are all inputs equal? What if we want to assign more weight (importance) to
some inputs? A perceptron allows weights to be assigned to inputs

What about functions which are not linearly separable ?

Not possible with a
single perceptron but we will see how to handle this ..

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

8/10

Coming back to our questions ...

What about non-boolean (say, real) inputs? Real valued inputs are allowed in
perceptron

Do we always need to hand code the threshold? No, we can learn the threshold

Are all inputs equal? What if we want to assign more weight (importance) to
some inputs? A perceptron allows weights to be assigned to inputs

What about functions which are not linearly separable ? Not possible with a
single perceptron but we will see how to handle this ..

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2

