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Module 2.8: Representation Power of a Network of
Perceptrons
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We will now see how to implement any boolean function using a network of
perceptrons ...
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x1 x2

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

For this discussion, we will assume True
= +1 and False = -1

We consider 2 inputs and 4 perceptrons

Each input is connected to all the 4 per-
ceptrons with specific weights

The bias (w0) of each perceptron is -2
(i.e., each perceptron will fire only if the
weighted sum of its input is ≥ 2)

Each of these perceptrons is connected to
an output perceptron by weights (which
need to be learned)

The output of this perceptron (y) is the
output of this network
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x1 x2

h1 h2 h3 h4

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

Terminology:

This network contains 3 layers

The layer containing the inputs (x1, x2) is
called the input layer

The middle layer containing the 4 per-
ceptrons is called the hidden layer

The final layer containing one output
neuron is called the output layer

The outputs of the 4 perceptrons in the
hidden layer are denoted by h1, h2, h3, h4

The red and blue edges are called layer 1
weights

w1, w2, w3, w4 are called layer 2 weights
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x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

We claim that this network can be used to
implement any boolean function (linearly
separable or not) !

In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean
function can be represented by this net-
work

Astonishing claim!

Well, not really, if you
understand what is going on

Each perceptron in the middle layer fires
only for a specific input (and no two per-
ceptrons fire for the same input)

Let us see why this network works by tak-
ing an example of the XOR function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2



5/6

x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

We claim that this network can be used to
implement any boolean function (linearly
separable or not) !

In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean
function can be represented by this net-
work

Astonishing claim!

Well, not really, if you
understand what is going on

Each perceptron in the middle layer fires
only for a specific input (and no two per-
ceptrons fire for the same input)

Let us see why this network works by tak-
ing an example of the XOR function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2



5/6

x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

We claim that this network can be used to
implement any boolean function (linearly
separable or not) !

In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean
function can be represented by this net-
work

Astonishing claim!

Well, not really, if you
understand what is going on

Each perceptron in the middle layer fires
only for a specific input (and no two per-
ceptrons fire for the same input)

Let us see why this network works by tak-
ing an example of the XOR function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2



5/6

x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

We claim that this network can be used to
implement any boolean function (linearly
separable or not) !

In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean
function can be represented by this net-
work

Astonishing claim! Well, not really, if you
understand what is going on

Each perceptron in the middle layer fires
only for a specific input (and no two per-
ceptrons fire for the same input)

Let us see why this network works by tak-
ing an example of the XOR function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2



5/6

x1 x2

h1 h2 h3 h4

-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

We claim that this network can be used to
implement any boolean function (linearly
separable or not) !

In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean
function can be represented by this net-
work

Astonishing claim! Well, not really, if you
understand what is going on

Each perceptron in the middle layer fires
only for a specific input (and no two per-
ceptrons fire for the same input)

Let us see why this network works by tak-
ing an example of the XOR function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 2



5/6

x1 x2

h1 h2 h3 h4

-1,-1

-1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

We claim that this network can be used to
implement any boolean function (linearly
separable or not) !

In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean
function can be represented by this net-
work

Astonishing claim! Well, not really, if you
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We claim that this network can be used to
implement any boolean function (linearly
separable or not) !

In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean
function can be represented by this net-
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Astonishing claim! Well, not really, if you
understand what is going on

Each perceptron in the middle layer fires
only for a specific input (and no two per-
ceptrons fire for the same input)

the second perceptron fires for {-1,1}

Let us see why this network works by tak-
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We claim that this network can be used to
implement any boolean function (linearly
separable or not) !

In other words, we can find w1, w2, w3, w4

such that the truth table of any boolean
function can be represented by this net-
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Astonishing claim! Well, not really, if you
understand what is going on

Each perceptron in the middle layer fires
only for a specific input (and no two per-
ceptrons fire for the same input)

the third perceptron fires for {1,-1}

Let us see why this network works by tak-
ing an example of the XOR function
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Let w0 be the bias output of the neuron
(i.e., it will fire if

∑4
i=1wihi ≥ w0)

x1 x2 XOR h1 h2 h3 h4

∑4
i=1 wihi

0 0 0 1 0 0 0 w1

0 1 1 0 1 0 0 w2

1 0 1 0 0 1 0 w3

1 1 0 0 0 0 1 w4

This results in the following four conditions
to implement XOR: w1 < w0, w2 ≥ w0, w3 ≥
w0, w4 < w0

Unlike before, there are no contradictions now
and the system of inequalities can be satisfied

Essentially each wi is now responsible for one
of the 4 possible inputs and can be adjusted
to get the desired output for that input
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-1,-1 -1,1 1,-1 1,1

bias =-2

y

w1 w2 w3 w4

red edge indicates w = -1
blue edge indicates w = +1

It should be clear that the same network
can be used to represent the remaining 15
boolean functions also

Each boolean function will result in a dif-
ferent set of non-contradicting inequalit-
ies which can be satisfied by appropriately
setting w1, w2, w3, w4

Try it!
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What if we have more than 3 inputs ?
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Again each of the 8 perceptorns will fire only for one of the 8 inputs

Each of the 8 weights in the second layer is responsible for one of the 8 inputs
and can be adjusted to produce the desired output for that input

x1 x2 x3

bias =-3

y

w1 w2 w3 w4 w5 w6 w7 w8
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What if we have n inputs ?
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Theorem

Any boolean function of n inputs can be represented exactly by a network of
perceptrons containing 1 hidden layer with 2n perceptrons and one output layer
containing 1 perceptron

Proof (informal:) We just saw how to construct such a network

Note: A network of 2n + 1 perceptrons is not necessary but sufficient. For
example, we already saw how to represent AND function with just 1 perceptron

Catch: As n increases the number of perceptrons in the hidden layers obviously
increases exponentially
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Again, why do we care about boolean functions ?

How does this help us with our original problem: which was to predict whether
we like a movie or not?

Let us see!
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x1 x2 x3

bias =-3

y

w1 w2 w3 w4 w5 w6 w7 w8

p1
p2
...
n1

n2
...



x11 x12 . . . x1n y1 = 1
x21 x22 . . . x2n y2 = 1

...
...

...
...

...
xk1 xk2 . . . xkn yi = 0
xj1 xj2 . . . xjn yj = 0
...

...
...

...
...



We are given this data about our past movie
experience

For each movie, we are given the values of the
various factors (x1, x2, . . . , xn) that we base
our decision on and we are also also given the
value of y (like/dislike)

pi’s are the points for which the output was 1
and ni’s are the points for which it was 0

The data may or may not be linearly separable

The proof that we just saw tells us that it is
possible to have a network of perceptrons and
learn the weights in this network such that for
any given pi or nj the output of the network
will be the same as yi or yj (i.e., we can sep-
arate the positive and the negative points)
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The story so far ...

Networks of the form that we just saw (containing, an input, output and one
or more hidden layers) are called Multilayer Perceptrons (MLP, in short)

More appropriate terminology would be“Multilayered Network of Perceptrons”
but MLP is the more commonly used name

The theorem that we just saw gives us the representation power of a MLP with
a single hidden layer

Specifically, it tells us that a MLP with a single hidden layer can represent any
boolean function
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