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Module 20.1 : Markov Chains
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X ∈ R1024

EP (X)[f(X)]

Let us first begin by restating our goals

Goal 1: Given a random variable X ∈ Rn,
we are interested in drawing samples from the
joint distribution P (X)

Goal 2: Given a function f(X) defined over
the random variable X, we are interested in
computing the expectation EP (X)[f(X)]

We will use Gibbs Sampling (class of
Metropolis-Hastings algorithm) to achieve
these goals

We will first understand the intuition be-
hind Gibbs Sampling and then understand the
math behind it
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X ∈ R1024

EP (X)[f(X)]

Suppose instead of a single random variable
X ∈ Rn, we have a chain of random variables
X1, X2, . . . , XK each Xi ∈ Rn

The i here corresponds to a time step

For example, Xi could be a n-dimensional vec-
tor containing the number of customers in a
given set of n restaurants on day i

In our case, Xi could be a 1024 dimensional
image sent by our friend on day i

For ease of illustration we will stick to the res-
taurant example and assume that instead of
actual counts we are interested only in binary
counts (high=1, low=0)

Thus Xi ∈ {0, 1}n

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



4/61

X ∈ R1024

EP (X)[f(X)]

Suppose instead of a single random variable
X ∈ Rn, we have a chain of random variables
X1, X2, . . . , XK each Xi ∈ Rn

The i here corresponds to a time step

For example, Xi could be a n-dimensional vec-
tor containing the number of customers in a
given set of n restaurants on day i

In our case, Xi could be a 1024 dimensional
image sent by our friend on day i

For ease of illustration we will stick to the res-
taurant example and assume that instead of
actual counts we are interested only in binary
counts (high=1, low=0)

Thus Xi ∈ {0, 1}n

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



4/61

X ∈ R1024

EP (X)[f(X)]

Suppose instead of a single random variable
X ∈ Rn, we have a chain of random variables
X1, X2, . . . , XK each Xi ∈ Rn

The i here corresponds to a time step

For example, Xi could be a n-dimensional vec-
tor containing the number of customers in a
given set of n restaurants on day i

In our case, Xi could be a 1024 dimensional
image sent by our friend on day i

For ease of illustration we will stick to the res-
taurant example and assume that instead of
actual counts we are interested only in binary
counts (high=1, low=0)

Thus Xi ∈ {0, 1}n

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



4/61

X ∈ R1024

EP (X)[f(X)]

Suppose instead of a single random variable
X ∈ Rn, we have a chain of random variables
X1, X2, . . . , XK each Xi ∈ Rn

The i here corresponds to a time step

For example, Xi could be a n-dimensional vec-
tor containing the number of customers in a
given set of n restaurants on day i

In our case, Xi could be a 1024 dimensional
image sent by our friend on day i

For ease of illustration we will stick to the res-
taurant example and assume that instead of
actual counts we are interested only in binary
counts (high=1, low=0)

Thus Xi ∈ {0, 1}n

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



4/61

X ∈ R1024

EP (X)[f(X)]

Suppose instead of a single random variable
X ∈ Rn, we have a chain of random variables
X1, X2, . . . , XK each Xi ∈ Rn

The i here corresponds to a time step

For example, Xi could be a n-dimensional vec-
tor containing the number of customers in a
given set of n restaurants on day i

In our case, Xi could be a 1024 dimensional
image sent by our friend on day i

For ease of illustration we will stick to the res-
taurant example and assume that instead of
actual counts we are interested only in binary
counts (high=1, low=0)

Thus Xi ∈ {0, 1}n

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



4/61

X ∈ R1024

EP (X)[f(X)]

Suppose instead of a single random variable
X ∈ Rn, we have a chain of random variables
X1, X2, . . . , XK each Xi ∈ Rn

The i here corresponds to a time step

For example, Xi could be a n-dimensional vec-
tor containing the number of customers in a
given set of n restaurants on day i

In our case, Xi could be a 1024 dimensional
image sent by our friend on day i

For ease of illustration we will stick to the res-
taurant example and assume that instead of
actual counts we are interested only in binary
counts (high=1, low=0)

Thus Xi ∈ {0, 1}n

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



5/61

x1

x2 x3

On day 1, let X1 take on the value x1 (x1 is
one of the possible 2n vectors)

On day 2, let X2 take on the value x2 (x2 is
again one of the possible 2n vectors)

One way of looking at this is that the state
has transitioned from x1 to x2

Similarly, on day 3, if X3 takes on the value x3

then we can say that the state has transitioned
from x1 to x2 to x3

Finally, on day n, we can say that the state
has transitioned from x1 to x2 to x3 to . . . xn
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x1 x2 x3 · · · xi

We may now be interested in knowing what is the most
likely value that the state will take on day i given the
states on day 1 to day i− 1

More formally, we may be interested in the following
distribution

P (Xi = xi|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1)

Now suppose the chain exhibits the following Markov
property

P (Xi = xi|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1)

= P (Xi = xi|Xi−1 = xi−1)

In other words, given the previous state Xi−1, Xi is
independent of all preceding states

Can we draw a graphical model to encode this inde-
pendence assumption ?
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In this graphical model, the random variables
are X1, X2, . . . , Xk

We will have a node corresponding to each of
these random variables

What will be the edges in the graph ?

Well, each node only depends on its prede-
cessor, so we will just have an edge between
successive nodes
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X1 X2 · · · Xk

This property (Xi ⊥⊥ Xi−2
1 |Xi−1) is called the

Markov property

And the resulting chain X1, X2, . . . , Xk is
called a Markov chain

Further, since we are considering discrete time
steps, this is called a discrete time Markov
Chain

Further, since Xi’s take on discrete values this
is called a discrete time discrete space Markov
Chain

Okay, but why are we interested in Markov
chains? (we will get there soon! for now let
us just focus on these definitions)
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X1 X2 · · · Xk

Recall that each Xi ∈ {0, 1}n

Xi−1 Xi−2 Tab
1 1 0.05
1 2 0.06
...

...
...

1 l 0.02

2 1 0.03
2 2 0.07
...

...
...

2 l 0.01
...

...
...

l 1 0.1
l 2 0.09
...

...
...

l l 0.21

Let us delve a bit deeper into Markov Chains
and define a few more quantities

Let us assume 2n = l (i.e., Xi can take l val-
ues)

How many values do we need to specify the
distribution

P (Xi = xi|Xi−1 = xi−1)?

(l2)

We can represent this as a matrix T ∈ l ×
l where the entry Ta,b of the matrix denotes
the probability of transitioning to state b from
state a (i.e., P (Xi = b|Xi−1 = a))

The matrix T is called the transition matrix
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We need to define this transition matrix Tab,
i.e.,

P (Xi = b|Xi−1 = a) ∀a, b ∀i

Why do we need to define this ∀i ?

Well,
because this transition probabilities may be
different for different time steps

For example, the transition in the number
of customers may be different from Friday
to Saturday (weekend) as compared to from
Sunday to Monday(weekday)

Thus, for a Markov chain X1, X2, . . . , Xk

we will have k such transition matrices
T1, T2, . . . , Tk
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to Saturday (weekend) as compared to from
Sunday to Monday(weekday)

Thus, for a Markov chain X1, X2, . . . , Xk

we will have k such transition matrices
T1, T2, . . . , Tk
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However, for this discussion we will assume
that the Markov chain is time homogeneous

What does that mean? It means that

T1 = T2 = · · · = Tk = T

In other words

P (Xi = b|Xi−1 = a) = Tab ∀a, b ∀i

The transition matrix does not depend on the
time i and hence such a Markov Chain is
called time homogeneous
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X1 X2 · · · Xk

Now suppose the starting distribution at time
step 0 is given by µ0)

Just to be clear µ0 is a 2n dimensional vector
such that

µ0
a = P (X0 = a)

µ0
a is the probability that the random variable

takes on the value a among all the possible 2n

values

Given µ0 and T how will you compute µk

where
µka = P (Xk = a)

µk is again a 2n dimensional vector whose ath

entry tells us the probability that Xk will take
on the value a among all the possible 2n values

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



12/61

X1 X2 · · · Xk

Now suppose the starting distribution at time
step 0 is given by µ0)

Just to be clear µ0 is a 2n dimensional vector
such that

µ0
a = P (X0 = a)

µ0
a is the probability that the random variable

takes on the value a among all the possible 2n

values

Given µ0 and T how will you compute µk

where
µka = P (Xk = a)

µk is again a 2n dimensional vector whose ath

entry tells us the probability that Xk will take
on the value a among all the possible 2n values

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



12/61

X1 X2 · · · Xk

Now suppose the starting distribution at time
step 0 is given by µ0)

Just to be clear µ0 is a 2n dimensional vector
such that

µ0
a = P (X0 = a)

µ0
a is the probability that the random variable

takes on the value a among all the possible 2n

values

Given µ0 and T how will you compute µk

where
µka = P (Xk = a)

µk is again a 2n dimensional vector whose ath

entry tells us the probability that Xk will take
on the value a among all the possible 2n values

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



12/61

X1 X2 · · · Xk

Now suppose the starting distribution at time
step 0 is given by µ0)

Just to be clear µ0 is a 2n dimensional vector
such that

µ0
a = P (X0 = a)

µ0
a is the probability that the random variable

takes on the value a among all the possible 2n

values

Given µ0 and T how will you compute µk

where
µka = P (Xk = a)

µk is again a 2n dimensional vector whose ath

entry tells us the probability that Xk will take
on the value a among all the possible 2n values

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



12/61

X1 X2 · · · Xk

Now suppose the starting distribution at time
step 0 is given by µ0)

Just to be clear µ0 is a 2n dimensional vector
such that

µ0
a = P (X0 = a)

µ0
a is the probability that the random variable

takes on the value a among all the possible 2n

values

Given µ0 and T how will you compute µk

where
µka = P (Xk = a)

µk is again a 2n dimensional vector whose ath

entry tells us the probability that Xk will take
on the value a among all the possible 2n values

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



13/61

...
...

b

X0 X1

l

2

1

Let us consider P (X1 = b)

P (X1 = b) =
∑
a

P (X0 = a,X1 = b)

The above sum essentially captures all the
paths of reaching X1 = b irrespective of the
value of X0

P (X1 = b) =
∑
a

P (X0 = a,X1 = b)

=
∑
a

P (X0 = a)P (X1 = b|X0 = a)

=
∑
a

µ0
aTab
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3 3

2 2

1 1

0.4

0.2

0.4
0.1

0.6

0.3
0.3

0.5

0.2

X0 X1

0.3

0.4

0.3

µ0T =
[
0.3 0.4 0.3

] 0.2 0.5 0.3
0.3 0.6 0.1
0.4 0.2 0.4


=
[
0.3 0.45 0.25

]

Let us see if there is a more compact
way of writing the distribution P (X1)
(i.e., of specifying P (X1 = b) ∀b)

Let us consider a simple case when
l = 3 (as opposed to 2n)

Thus, µ0 ∈ R3 and T ∈ R3×3

What does the product µ0T give us ?

It gives us the distribution µ1! (the
bth entry of this vector is

∑
a µ

0
aTab

which is P (X1 = b))
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...
...

...

b

X0 X1 X2

l

2

1

Let us consider P (X2 = b)

P (X2 = b) =
∑
a

P (X1 = a,X2 = b)

The above sum essentially captures all the paths
of reaching X2 = b irrespective of the value of X1

P (X2 = b) =
∑
a

P (X1 = a,X2 = b)

=
∑
a

P (X1 = a)P (X2 = b|X1 = a)

=
∑
a

µ1
aTab
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...
...

...

b

X0 X1 X2

l

2

1

Once again we can write P (X2) compactly as

P (X2) = µ1T = (µ0T )T = µ0T 2

In general,

P (Xk) =

µ0T k

Thus the distribution at any time step can be
computed by finding the appropriate element
from the following series

µ0T 1, µ0T 2, µ0T 3, . . . , µ0T k, . . .

Note that this is still computationally expens-
ive because it involves a product of µ0(2n) and
T k(2n × 2n) (but later on we will see that we
do not need this full product)
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ive because it involves a product of µ0(2n) and
T k(2n × 2n) (but later on we will see that we
do not need this full product)
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If at a certain time step t, µt reaches a distri-
bution π such that πT = π

Then for all subsequent time steps

µj = π(j ≥ t)

π is then called the stationary distribution of
the Markov chain

Xt, Xt+1, Xt+2, . . . will all follow the same dis-
tribution π

In other words, if we have Xt = xt, Xt+1 =
xt+1, Xt+2 = xt+2 and so on then we can think
of xt, xt+1, xt+2 as samples drawn from the
same distribution π (this is a crucial property
and we will return back to it soon)
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...

b

X0 X1 X2
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Important: If we run a Markov Chain for a
large number of time steps then after a point
we start getting samples xt, xt+1, xt+2, . . .
which are essentially being drawn from the
stationary distribution (Spoiler Alert: one
of our goals was to draw samples from a very
complex distribution)

What do we mean by run a Markov Chain for
a large number of time steps ?

It means we start drawing a sample X0 ∼ µ0

and then continue drawing samples

X1 ∼ µ0T, X2 ∼ µ0T 2, X3 ∼ µ0T 3, . . . ,

. . . , Xt ∼ π, Xt+1 ∼ π, Xt+2 ∼ π . . .

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



18/61

...
...

...

b

X0 X1 X2

l

2

1

Important: If we run a Markov Chain for a
large number of time steps then after a point
we start getting samples xt, xt+1, xt+2, . . .
which are essentially being drawn from the
stationary distribution (Spoiler Alert: one
of our goals was to draw samples from a very
complex distribution)

What do we mean by run a Markov Chain for
a large number of time steps ?

It means we start drawing a sample X0 ∼ µ0

and then continue drawing samples

X1 ∼ µ0T, X2 ∼ µ0T 2, X3 ∼ µ0T 3, . . . ,

. . . , Xt ∼ π, Xt+1 ∼ π, Xt+2 ∼ π . . .

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



18/61

...
...

...

b

X0 X1 X2

l

2

1

Important: If we run a Markov Chain for a
large number of time steps then after a point
we start getting samples xt, xt+1, xt+2, . . .
which are essentially being drawn from the
stationary distribution (Spoiler Alert: one
of our goals was to draw samples from a very
complex distribution)

What do we mean by run a Markov Chain for
a large number of time steps ?

It means we start drawing a sample X0 ∼ µ0

and then continue drawing samples

X1 ∼ µ0T, X2 ∼ µ0T 2, X3 ∼ µ0T 3, . . . ,

. . . , Xt ∼ π, Xt+1 ∼ π, Xt+2 ∼ π . . .

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



19/61

...
...

...

b

X0 X1 X2

l

2

1

Is it always easy to draw these samples?

No

|µk| = 2n which means that we need to com-
pute the probability of each of the possible 2n

values that Xk can take

In other words the joint distribution µk has
2n parameters which is prohibitively large

I wonder what can I do to reduce the number
of parameters in a joint distribution (I hope
you already know what to do but we will re-
turn back to it later)
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The story so far...

We have seen what a discrete space, discrete time, time homogeneous Markov
Chain is

We have also defined µ0 (initial distribution), T (transition matrix) and π
(stationary distribution)

So far so good! But why do we care about Markov Chains and their
properties?

How does this discussion tie back to our goals?

We will first see an intuitive explanation for how all this ties back to our goals
and then get into a more formal discussion

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



20/61

The story so far...

We have seen what a discrete space, discrete time, time homogeneous Markov
Chain is

We have also defined µ0 (initial distribution), T (transition matrix) and π
(stationary distribution)

So far so good! But why do we care about Markov Chains and their
properties?

How does this discussion tie back to our goals?

We will first see an intuitive explanation for how all this ties back to our goals
and then get into a more formal discussion

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



20/61

The story so far...

We have seen what a discrete space, discrete time, time homogeneous Markov
Chain is

We have also defined µ0 (initial distribution), T (transition matrix) and π
(stationary distribution)

So far so good! But why do we care about Markov Chains and their
properties?

How does this discussion tie back to our goals?

We will first see an intuitive explanation for how all this ties back to our goals
and then get into a more formal discussion

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



20/61

The story so far...

We have seen what a discrete space, discrete time, time homogeneous Markov
Chain is

We have also defined µ0 (initial distribution), T (transition matrix) and π
(stationary distribution)

So far so good! But why do we care about Markov Chains and their
properties?

How does this discussion tie back to our goals?

We will first see an intuitive explanation for how all this ties back to our goals
and then get into a more formal discussion

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



20/61

The story so far...

We have seen what a discrete space, discrete time, time homogeneous Markov
Chain is

We have also defined µ0 (initial distribution), T (transition matrix) and π
(stationary distribution)

So far so good! But why do we care about Markov Chains and their
properties?

How does this discussion tie back to our goals?

We will first see an intuitive explanation for how all this ties back to our goals
and then get into a more formal discussion

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



21/61

Module 20.2 : Why do we care about Markov Chains?
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X ∈ R1024

EP (X)[f(X)]

Recall our goals

Goal 1: Sample from P (X)

Goal 2: Compute EP (X)f(X)

Now suppose we set up a Markov Chain
X1, X2, . . . such that

It is easy to draw samples from this chain and
This Markov Chain’s stationary distribution
is P (X)

Then it would mean that if we run the Markov
Chain for long enough, we will start getting
samples from P (X)

And once we have a large number of such samples
we can empirically estimate EP (X)f(X) as

1

n

l+n∑
i=l

f(Xi)
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We will now get into a formal discussion to concretize the above intuition
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Theorem: If X0, X1, . . . , Xt is an irreducible time homogeneous discrete Markov
Chain with stationary distribution π, then

1

t

t∑
i=1

f(Xi)
converges almost surely−−−−−−−−−−−−−−→

t→∞
Eπ[f(X)], where X ∈X and X ∼ π

for any function f : X → R
If, further the Markov Chain is aperiodic then P (Xt = xt|X0 = x0)→ π(X) as
t→∞ ∀x, x0 ∈X

So Part A of the theorem essentially tells us that if we can set up the chainX0, X1, . . . , Xt

such that it is tractable then using samples from this chain we can compute Eπ[f(X)]
(which we know is otherwise intractable)

Similarly Part B of the theorem says that if we can set up the chain X0, X1, . . . , Xt
such that it is tractable then we can essentially get samples as if they were drawn from
π(X) (which was otherwise intractable)

Of course Part A and Part B are related!
Further note that it doesn’t matter what the initial state was (the theorem holds for
∀x, x0 ∈X )
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So our task is cut out now

Define what our Markov Chain is?

Define the transition matrix T for our Markov Chain

Show how it is easy to sample from this chain

Show that the stationary distribution of this chain is the distribution P (X)
(i.e., the distribution that we care about)

Show that the chain is irreducible and aperiodic (because the theorem only
holds for such chains)

For ease of notation instead of X = V1, V2, Vm, . . . ,H1, H2, . . . ,Hn, we will use
X = X1, X2, . . . , Xn+m
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Module 20.3 : Setting up a Markov Chain for RBMs
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V1 V2 . . . Vm H1 H2 . . . Hn

X1 X2 X3 . . . . . . Xn+m

0 1 1 0 . . . . . . 1

1 1 0 0 . . . . . . 1

2

We begin by defining our Markov Chain

Recall that X = {V,H} ∈ {0, 1}n+m, so at
time step 0 we create a random vector X ∈
{0, 1}n+m

At time-step 1, we transition to a new value
of X

What does this mean? How do we do this
transition? Let us see
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...

...
...

...

We need to transition from a state X = x ∈
{0, 1}n+m to y ∈ {0, 1}n+m

This is how we will do it

Sample a value i ∈ {1 to n + m} using a dis-
tribution q(i) (say, uniform distribution)

Fix the value of all variables except Xi

Sample a new value for Xi (could be a V or a
H) using the following conditional distribution

P (Xi = yi|X−i = x−i)

Repeat the above process for many many time
steps (each time step corresponds to 1 step of
the chain)
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...

...
...

...

What are we doing here? How is this related
to our goals?

More specifically, we have defined a Markov
Chain, but where is our Transition Matrix T?

How is it easy to create this chain (or creating
samples x0, x1, ...xN ) ?

How do we show that the stationary distribu-
tion is P (X) (where X = V,H) [We haven’t
even defined T , then how can we talk about
the stationary distribution for T ] ?

Let us answer these questions one by one
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X1 X2 X3 . . . . . . Xn+m
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3 1 0 1 . . . . . . 1

4 1 0 1 . . . . . . 0
...

...
...

...

First, let us talk about the transition matrix

We have actually defined T although we did
not explicitly mention it

What would T contain ?

The probability of
transitioning from any state x to any state y

So T ∈ R2m+n×2m+n

(when did we define such
a matrix?)

Actually, we defined a very simple T which
allowed only certain types of transitions

In particular, under this T , transitioning from
a state x to a state y was possible only if x and
y differ in the value of only one of the n + m
variables
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More formally, we defined T such that

pxy =

{
q(i)P (yi|x−i), if ∃i ∈ X so that ∀v ∈ X with v 6= i, xv = yv

0, otherwise

where q(i) is the probability that Xi is the random variable whose value trans-
itions while the value of X−i remains the same

The second term P (Xi = yi|X−i) essentially tells us that given the value of the
remaining random variable what is the probability of Xi taking on a certain
value

With that we have answered the first question “What is the transition matrix
T?” (It is a very sparse matrix allowing only certain transitions)
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V1 V2 . . . Vm H1 H2 . . . Hn

X1 X2 X3 . . . . . . Xn+m

0 1 1 0 . . . . . . 1

1 1 0 0 . . . . . . 1

2 1 0 1 . . . . . . 1

3 1 0 1 . . . . . . 1

4 1 0 1 . . . . . . 0
...

...
...

...

We now look at the second question :

How is it
easy to create this chain (or creating samples
x0, x1, ...xl)?

At each step we are changing only one of the
n + m random variables using the following
probability

P (Xi = yi|X−i = x−i) =
P (X)

P (X−i)

But how is computing this probability easy?
Doesn’t the joint distribution on LHS also
have 2n+m parameters ?

Well, not really !
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...

Consider the case when i <= m (i.e., we have
decided to transition the value of one of the
visible variables V1 to Vm)

Then P (Xi = yi|X−i = x−i) is essentially

P (Vi = yi|V−i, H) = P (Vi = yi|H) =

{
z, if yi = 1

1− z, if yi = 0

where z = σ(
∑m

j=1wijvj + ci)

The above probability is very easy to compute
(just a sigmoid function)

Once you compute the above probability, with
probability z you will set the value of Vi to 1
and with probability 1− z you will set it to 0
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V1 V2 . . . Vm H1 H2 . . . Hn

X1 X2 X3 . . . . . . Xn+m

0 1 1 0 . . . . . . 1

1 1 0 0 . . . . . . 1

2 1 0 1 . . . . . . 1

3 1 0 1 . . . . . . 1

4 1 0 1 . . . . . . 0
...

...
...

...

So essentially at every time step you sample a
i from a uniform distribution (qi)

And then sample a value of Vi ∈ {0, 1} using
the distribution Bernoulli(z)

Both these computations are easy

Hence it is easy to create this chain starting
from any x0
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Okay, finally let’s look at the third question: How do we show that the stationary
distribution is P (X) (where X = V,H)

To prove this we will refer to the following Theorem:

Detailed Balance Condition

To show that a distribution π is a stationary distribution for a Markov Chain
described by the transition probabilities pxy, x, y ∈ Ω, it is sufficient to show that
∀x, y ∈ Ω, the following condition holds:

π(x)pxy = π(x)pyx

Let us revisit what pxy is and what π is
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Recall that pxy is given by

pxy =

{
q(i)P (Xi = yi|X−ix−i), if ∃i ∈ {1, 2, . . . , n+m} such that ∀j ∈ {1, 2, . . . , n+m}if j 6= i, xj = yj

0, otherwise

For consistency of notation we will denote P (X) i.e., P (V,H) as π(X)

Further, as shorthand we will refer to π(X = x) as π(x)

Thus, to prove that P (X), i.e., π(X) is the stationary distribution for our
Markov Chain we need to prove that

π(x)pxy = π(y)pyx ∀x,y ∈ {0, 1}m+n
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To prove: π(x)pxy = π(y)pyx

V1 V2 . . . Vm H1 H2 . . . Hn

X1 X2 X3 . . . . . . Xn+m

0 1 1 0 . . . . . . 1

1 1 0 0 . . . . . . 1

2 1 0 1 . . . . . . 1

3 1 0 1 . . . . . . 1

4 1 0 1 . . . . . . 0
...

...
...

...

There are 3 cases that we need to consider

Case 1:

x and y differ in the state of more
than one random variable

In this case, by definition

π(x)pxy = π(x) ∗ 0 = 0

π(y)pyx = π(y) ∗ 0 = 0

Hence the detailed balance condition holds
trivially
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Thus we have proved that the detailed balance
condition holds in all the 3 cases

Case 1:

x and y differ in the state of more
than one random variable

Case 2:

x and y are equal (i.e., they do not
differ in the state of any random variable)

Case 3:

x and y differ in the state of only
one random variable
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So our task is cut out now

Define what our Markov Chain is?

(done)

Define the transition matrix T for our Markov Chain

(done)

Show how it is easy to sample from this chain

(done)

Show that the stationary distribution of this chain is the distribution P (X)
(i.e., the distribution that we care about)

(done)

Show that the chain is irreducible and aperiodic

(let us see)
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V1 V2 . . . Vm H1 H2 . . . Hn

X1 X2 X3 . . . . . . Xn+m

0 1 1 0 . . . . . . 1

1 1 0 0 . . . . . . 1

2 1 0 1 . . . . . . 1

3 1 0 1 . . . . . . 1

4 1 0 1 . . . . . . 0
...

...
...

...

A Markov chain is irreducible if one can get
from any state in Ω to any other in a finite
number of transitions or more formally

∀i, j ∈ Ω ∃k > 0 with

P (X(k) = j|X(0) = i) > 0

Intuitively, we can see that our chain is irre-
ducible

For example, notice that we can reach from
the state containing all 0’s to all 1’s after some
finite time steps

We can prove this more formally but for now
we will just rely on the intuition
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V1 V2 . . . Vm H1 H2 . . . Hn

X1 X2 X3 . . . . . . Xn+m

0 1 1 0 . . . . . . 1

1 1 0 0 . . . . . . 1

2 1 0 1 . . . . . . 1

3 1 0 1 . . . . . . 1

4 1 0 1 . . . . . . 0
...

...
...

...

A chain is called aperiodic if ∀i ∈ Ω the
greatest common divisor of
{k|P (X(k) = i|X(0) = i) > 0 ∧ k ∈ N0} is 1

The set we have defined above contains all the
timesteps at which we can reach state i start-
ing from step i

Suppose the chain was periodic then this set
would contain multiples of a certain number

For example, {3, 6, 9, 12, . . . } and hence the
greater common divisor would be 3 (and the
Markov Chain would be periodic with a period
of 3)

However if the chain is not periodic then the
set would contain arbitrary numbers and their
GCD would just be 1 (hence the above defin-
ition)
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V1 V2 . . . Vm H1 H2 . . . Hn

X1 X2 X3 . . . . . . Xn+m
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...

...

Again intuitively it should be clear that our
chain is aperiodic

Once again, we can formally prove this but we
will just rely on the intuition for now
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So our task is cut out now

Define what our Markov Chain is? (done)

Define the transition matrix T for our Markov Chain (done)

Show how it is easy to sample from this chain (done)

Show that the stationary distribution of this chain is the distribution P (X)
(i.e., the distribution that we care about) (done)

Show that the chain is irreducible and aperiodic

(done)
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Module 20.4 : Training RBMs using Gibbs Sampling
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Okay, so we are now ready to write the full algorithm for training RBMs using
Gibbs Sampling

We will first quickly revisit the expectations that we wanted to compute and
write a simplified expression for them
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v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

E(V,H) = −
∑

i

∑
j wijvihj −∑

i bivi −
∑

j cjhj

∂L (θ)

∂wij

= −
∑
H

p(H|V )
∂E(V,H)

∂wij
+
∑
V,H

p(V,H)
∂E(V,H)

∂wij

=
∑
H

p(H|V )hivj −
∑
V,H

p(V,H)hivj

= Ep(H|V )[vihj ]− Ep(V,H)[vihj ]

We were interested in computing the partial
derivative of the log likehood w.r.t. one of the
parameters (wij)

We saw that this partial derivative is actually
the sum of two expectations

We will now simplify the expression for these
two expectations
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∂L (θ)

∂wij
= Ep(H|V )[vjhi]− Ep(V,H)[vjhi]

=
∑
h

p(h|v)hivj −
∑
v,h

p(v,h)hivj

=
∑
h

p(h|v)hivj −
∑
v

p(v)
∑
h

p(h|v)hivj

We will first focus on
∑
h

p(h|v)hivj∑
h

p(h|v)hivj =
∑
hi

∑
h−i

p(hi|v)p(h−i|v)hivj

=
∑
hi

p(hi|v)hivj
∑
h−i

p(h−i|v)

= p(Hi = 1|v)vj

= σ(
m∑

j=1

wijvj + ci)vj

∂L (θ)

∂wij
= σ(

m∑
j=1

wijvj + ci)vj −
∑
v

p(v)σ(

m∑
j=1

wijvj + ci)vj
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v1 v2 · · · vm

h1 h2 · · · hn

∂L (θ)

∂wij
= σ(

m∑
j=1
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∑
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p(v)σ(

m∑
j=1

wijvj + ci)vj
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∑
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p(v)σ(wiv + ci)vj

∇WL (θ) = σ(Wv + c)vT −
∑
v

p(v)σ(Wv + c)vT

= σ(Wv + c)vT − Ev[σ(Wv + c)vT ]
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∂L (θ)

∂ci
= Ep(H|V )[hi]− Ep(V,H)[hi]

=
∑
h

p(h|v)hi −
∑
v,h

p(v,h)hi

=
∑
h

p(h|v)hi −
∑
v

p(v)
∑
h

p(h|v)hi

= p(Hi = 1|v)−
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p(v)p(Hi = 1|v)
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m∑
j=1

wijvj + ci)−
∑
v

p(v)σ(

m∑
j=1

wijvj + ci)

∇cL (θ) = σ(Wv + c)−
∑
v

p(v)σ(Wv + c)

= σ(Wv + c)− Ev[σ(Wv + c)]
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Ev[σ(Wv + c)vT ]

≈ 1

k

k∑
i=1

σ(Wv(k) + c)v(k)T

Ev[v]

≈ 1

k

k∑
i=1

v(k)

Ev[σ(Wv + c)]

≈ 1

k

k∑
i=1

σ(Wv(k) + c)

Notice that all the 3 gradient
expressions have an expectation
term

These expectations are intractable.

Solution?

Estimation with the help
of sampling

Specifically, we will use Gibbs
Sampling to estimate the
expectation
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Algorithm 0: RBM Training with Block Gibbs Sampling

Input: RBM (V1, ..., Vm, H1, ...,Hn), training batch D
Output: Learned Parameters W, b, c
init W, b, c
forall v ∈ D do

Randomly initialize v(0)

for t = 0, ..., k, k + 1, ..., k + r do

for i = 1, ..., n do

sample h
(t)
i ∼ p(hi|v(t))

end
for j = 1, ...,m do

sample v
(t+1)
j ∼ p(vj |h(t))

end

end

W←W + η

[σ(Wvd + c)vTd − 1
r

∑k+r
t=k+1 σ(Wv(t) + c)v(t)T ]

b← b + η

[vd − 1
r

∑k+r
t=k+1 v

(t)]

c← c + η

[σ(Wvd + c)− 1
r

∑k+r
t=k+1 σ(Wv(t) + c)]

end
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Module 20.5 : Training RBMs using Contrastive
Divergence
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In practice, Gibbs Sampling can be very inefficient because for every step of
stochastic gradient descent we need to run the Markov chain for many many
steps and then compute the expectation using the samples drawn from this
chain

We will now see a more efficient algorithm called k-contrastive divergence
which is used in practice for training RBMs
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Ep(H|V )[vjhi] = σ(wiv + ci)vj

Ep(V,H)[vjhi] =
∑
v

p(v)σ(wiv + ci)vj

Just to reiterate, our goal is to compute
the two expectations efficiently

We already have a simplified formula for
the first expectation

Furthermore, note that the first
expectation depends only on the seen
training example (v)

The second expectation depends on the
samples drawn from the Markov chain
(v1, v2, ..., vn)

The first expectation thus depends on
the empirical samples, whereas the
second expectation depends on the
model samples (because the samples are
generated based on P (V |H) and
P (H|V ) output by the model)
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. . .

∼ p(h|v) ∼ p(v|h) ∼ p(h|v) ∼ p(v|h)

Vs V(1) V(k) = Ṽ

Contrastive divergence uses the following idea

Instead of starting the Markov Chain at a random point (V = v0), start from
v(t) where v(t) is the current training instance
Run Gibbs Sampling for k steps and denote the sample at the kth step by ṽ
Replace the expectation by a point estimate

Ep(V,H)[vjhi]

=
∑
v

p(v)σ(wiv + ci)vj

≈ σ(wiṽ + ci)ṽj
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Replace the expectation by a point estimate

Ep(V,H)[vjhi]

=
∑
v

p(v)σ(wiv + ci)vj

≈ σ(wiṽ + ci)ṽj
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Contrastive divergence uses the following idea
Instead of starting the Markov Chain at a random point (V = v0), start from
v(t) where v(t) is the current training instance
Run Gibbs Sampling for k steps and denote the sample at the kth step by ṽ
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Over time as our model becomes better and better ṽ should start looking
more and more like our training (empirical) samples

Once that starts happening what will happen to the gradient ?

We consider the derivative w.r.t wij again

∂L (θ)

∂wij
= σ(wiv + ci)vj −

∑
v

p(v)σ(

m∑
j=1

wiv + ci)vj

We have two summations here

The first term can be thought of as summation over a single point v from
training example

Similarly, for the second term, the summation over ṽ is being replaced by a
point estimate computed from the model sample

As training progresses and ṽ (model sample) starts looking more and more
like our training (empirical) samples, the difference between the two terms will
be small and the parameters of the model will stabilize (convergence)
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As training progresses and ṽ (model sample) starts looking more and more
like our training (empirical) samples, the difference between the two terms will
be small and the parameters of the model will stabilize (convergence)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



59/61

Over time as our model becomes better and better ṽ should start looking
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As training progresses and ṽ (model sample) starts looking more and more
like our training (empirical) samples, the difference between the two terms will
be small and the parameters of the model will stabilize (convergence)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 20



59/61

Over time as our model becomes better and better ṽ should start looking
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Algorithm 0: k-step Contrastive Divergence

Input: RBM (V1, ..., Vm, H1, ...,Hn), training batch D
Output: Learned Parameters W, b, c
init W = b = c = 0
forall v ∈ D do

Initialize v(0) ← v
for t = 0, ..., k do

for i = 1, ..., n do

sample h
(t)
i ∼ p(hi|v(t))

end
for j = 1, ...,m do

sample v
(t+1)
j ∼ p(vj |h(t))

end

end

W←W + η

[σ(Wvd + c)vTd − σ(Wṽ + c)ṽ]

b← b + η

[v − ṽ]

c← c + η

[σ(Wv + c)− σ(Wṽ + c)]

end
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b← b + η

[v − ṽ]
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c← c + η

[σ(Wv + c)− σ(Wṽ + c)]
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c← c + η

[σ(Wv + c)− σ(Wṽ + c)]
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c← c + η

[σ(Wv + c)− σ(Wṽ + c)]
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. . .

∼ p(h|v) ∼ p(v|h) ∼ p(h|v) ∼ p(v|h)

Vs V(1) V(k) = Ṽ

In practice, k = 1 also works well

The higher the value of k, the less biased the estimate of the gradient will be.
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