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Module 21.1: Revisiting Autoencoders
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X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Before we start talking about VAEs, let us
quickly revisit autoencoders

An autoencoder contains an encoder which
takes the input X and maps it to a hidden
representation

The decoder then takes this hidden
representation and tries to reconstruct
the input from it as X̂

The training happens using the following
objective function

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)
2

where m is the number of training instances,
{xi}mi=1 and each xi ∈ Rn (xij is thus the j-th
dimension of the i-th training instance)
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X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

But where’s the fun in this ?

We are taking an input and simply
reconstructing it

Of course, the fun lies in the fact that we are
getting a good abstraction of the input

But RBMs were able to do something more
besides abstraction

(they were able to do
generation)

Let us revisit generation in the context of
autoencoders
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X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Can we do generation with autoencoders ?

In other words, once the autoencoder is
trained can I remove the encoder, feed a
hidden representation h to the decoder and
decode a X̂ from it ?

In principle, yes! But in practice there is a
problem with this approach

h is a very high dimensional vector and
only a few vectors in this space would
actually correspond to meaningful latent
representations of our input

So of all the possible value of h which values
should I feed to the decoder (we had asked a
similar question before: slide 67, bullet 5 of
lecture 19)
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h

W ∗

X̂

X̂ = f(W ∗h+ c)

Ideally, we should only feed those values of h
which are highly likely

In other words, we are interested in sampling
from P (h|X) so that we pick only those h’s
which have a high probability

But unlike RBMs, autoencoders do not have
such a probabilistic interpretation

They learn a hidden representation h but not
a distribution P (h|X)

Similarly the decoder is also deterministic and
does not learn a distribution over X (given a
h we can get a X but not P (X|h) )
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We will now look at variational autoencoders which have the same structure as
autoencoders but they learn a distribution over the hidden variables
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