
1/7

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



2/7

Module 21.1: Revisiting Autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Before we start talking about VAEs, let us
quickly revisit autoencoders

An autoencoder contains an encoder which
takes the input X and maps it to a hidden
representation

The decoder then takes this hidden
representation and tries to reconstruct
the input from it as X̂

The training happens using the following
objective function

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)
2

where m is the number of training instances,
{xi}mi=1 and each xi ∈ Rn (xij is thus the j-th
dimension of the i-th training instance)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Before we start talking about VAEs, let us
quickly revisit autoencoders

An autoencoder contains an encoder which
takes the input X and maps it to a hidden
representation

The decoder then takes this hidden
representation and tries to reconstruct
the input from it as X̂

The training happens using the following
objective function

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)
2

where m is the number of training instances,
{xi}mi=1 and each xi ∈ Rn (xij is thus the j-th
dimension of the i-th training instance)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Before we start talking about VAEs, let us
quickly revisit autoencoders

An autoencoder contains an encoder which
takes the input X and maps it to a hidden
representation

The decoder then takes this hidden
representation and tries to reconstruct
the input from it as X̂

The training happens using the following
objective function

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)
2

where m is the number of training instances,
{xi}mi=1 and each xi ∈ Rn (xij is thus the j-th
dimension of the i-th training instance)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Before we start talking about VAEs, let us
quickly revisit autoencoders

An autoencoder contains an encoder which
takes the input X and maps it to a hidden
representation

The decoder then takes this hidden
representation and tries to reconstruct
the input from it as X̂

The training happens using the following
objective function

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)
2

where m is the number of training instances,
{xi}mi=1 and each xi ∈ Rn (xij is thus the j-th
dimension of the i-th training instance)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Before we start talking about VAEs, let us
quickly revisit autoencoders

An autoencoder contains an encoder which
takes the input X and maps it to a hidden
representation

The decoder then takes this hidden
representation and tries to reconstruct
the input from it as X̂

The training happens using the following
objective function

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)
2

where m is the number of training instances,
{xi}mi=1 and each xi ∈ Rn (xij is thus the j-th
dimension of the i-th training instance)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



4/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

But where’s the fun in this ?

We are taking an input and simply
reconstructing it

Of course, the fun lies in the fact that we are
getting a good abstraction of the input

But RBMs were able to do something more
besides abstraction

(they were able to do
generation)

Let us revisit generation in the context of
autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



4/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

But where’s the fun in this ?

We are taking an input and simply
reconstructing it

Of course, the fun lies in the fact that we are
getting a good abstraction of the input

But RBMs were able to do something more
besides abstraction

(they were able to do
generation)

Let us revisit generation in the context of
autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



4/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

But where’s the fun in this ?

We are taking an input and simply
reconstructing it

Of course, the fun lies in the fact that we are
getting a good abstraction of the input

But RBMs were able to do something more
besides abstraction

(they were able to do
generation)

Let us revisit generation in the context of
autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



4/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

But where’s the fun in this ?

We are taking an input and simply
reconstructing it

Of course, the fun lies in the fact that we are
getting a good abstraction of the input

But RBMs were able to do something more
besides abstraction

(they were able to do
generation)

Let us revisit generation in the context of
autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



4/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

But where’s the fun in this ?

We are taking an input and simply
reconstructing it

Of course, the fun lies in the fact that we are
getting a good abstraction of the input

But RBMs were able to do something more
besides abstraction (they were able to do
generation)

Let us revisit generation in the context of
autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



4/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

But where’s the fun in this ?

We are taking an input and simply
reconstructing it

Of course, the fun lies in the fact that we are
getting a good abstraction of the input

But RBMs were able to do something more
besides abstraction (they were able to do
generation)

Let us revisit generation in the context of
autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



5/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Can we do generation with autoencoders ?

In other words, once the autoencoder is
trained can I remove the encoder, feed a
hidden representation h to the decoder and
decode a X̂ from it ?

In principle, yes! But in practice there is a
problem with this approach

h is a very high dimensional vector and
only a few vectors in this space would
actually correspond to meaningful latent
representations of our input

So of all the possible value of h which values
should I feed to the decoder (we had asked a
similar question before: slide 67, bullet 5 of
lecture 19)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



5/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Can we do generation with autoencoders ?

In other words, once the autoencoder is
trained can I remove the encoder, feed a
hidden representation h to the decoder and
decode a X̂ from it ?

In principle, yes! But in practice there is a
problem with this approach

h is a very high dimensional vector and
only a few vectors in this space would
actually correspond to meaningful latent
representations of our input

So of all the possible value of h which values
should I feed to the decoder (we had asked a
similar question before: slide 67, bullet 5 of
lecture 19)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



5/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Can we do generation with autoencoders ?

In other words, once the autoencoder is
trained can I remove the encoder, feed a
hidden representation h to the decoder and
decode a X̂ from it ?

In principle, yes! But in practice there is a
problem with this approach

h is a very high dimensional vector and
only a few vectors in this space would
actually correspond to meaningful latent
representations of our input

So of all the possible value of h which values
should I feed to the decoder (we had asked a
similar question before: slide 67, bullet 5 of
lecture 19)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



5/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Can we do generation with autoencoders ?

In other words, once the autoencoder is
trained can I remove the encoder, feed a
hidden representation h to the decoder and
decode a X̂ from it ?

In principle, yes! But in practice there is a
problem with this approach

h is a very high dimensional vector and
only a few vectors in this space would
actually correspond to meaningful latent
representations of our input

So of all the possible value of h which values
should I feed to the decoder (we had asked a
similar question before: slide 67, bullet 5 of
lecture 19)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



5/7

X

W

h

W ∗

X̂

h = g(WX+ b)

X̂ = f(W ∗h+ c)

Can we do generation with autoencoders ?

In other words, once the autoencoder is
trained can I remove the encoder, feed a
hidden representation h to the decoder and
decode a X̂ from it ?

In principle, yes! But in practice there is a
problem with this approach

h is a very high dimensional vector and
only a few vectors in this space would
actually correspond to meaningful latent
representations of our input

So of all the possible value of h which values
should I feed to the decoder (we had asked a
similar question before: slide 67, bullet 5 of
lecture 19)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



6/7

h

W ∗

X̂

X̂ = f(W ∗h+ c)

Ideally, we should only feed those values of h
which are highly likely

In other words, we are interested in sampling
from P (h|X) so that we pick only those h’s
which have a high probability

But unlike RBMs, autoencoders do not have
such a probabilistic interpretation

They learn a hidden representation h but not
a distribution P (h|X)

Similarly the decoder is also deterministic and
does not learn a distribution over X (given a
h we can get a X but not P (X|h) )

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



6/7

h

W ∗

X̂

X̂ = f(W ∗h+ c)

Ideally, we should only feed those values of h
which are highly likely

In other words, we are interested in sampling
from P (h|X) so that we pick only those h’s
which have a high probability

But unlike RBMs, autoencoders do not have
such a probabilistic interpretation

They learn a hidden representation h but not
a distribution P (h|X)

Similarly the decoder is also deterministic and
does not learn a distribution over X (given a
h we can get a X but not P (X|h) )

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



6/7

h

W ∗

X̂

X̂ = f(W ∗h+ c)

Ideally, we should only feed those values of h
which are highly likely

In other words, we are interested in sampling
from P (h|X) so that we pick only those h’s
which have a high probability

But unlike RBMs, autoencoders do not have
such a probabilistic interpretation

They learn a hidden representation h but not
a distribution P (h|X)

Similarly the decoder is also deterministic and
does not learn a distribution over X (given a
h we can get a X but not P (X|h) )

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



6/7

h

W ∗

X̂

X̂ = f(W ∗h+ c)

Ideally, we should only feed those values of h
which are highly likely

In other words, we are interested in sampling
from P (h|X) so that we pick only those h’s
which have a high probability

But unlike RBMs, autoencoders do not have
such a probabilistic interpretation

They learn a hidden representation h but not
a distribution P (h|X)

Similarly the decoder is also deterministic and
does not learn a distribution over X (given a
h we can get a X but not P (X|h) )

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



6/7

h

W ∗

X̂

X̂ = f(W ∗h+ c)

Ideally, we should only feed those values of h
which are highly likely

In other words, we are interested in sampling
from P (h|X) so that we pick only those h’s
which have a high probability

But unlike RBMs, autoencoders do not have
such a probabilistic interpretation

They learn a hidden representation h but not
a distribution P (h|X)

Similarly the decoder is also deterministic and
does not learn a distribution over X (given a
h we can get a X but not P (X|h) )

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



7/7

We will now look at variational autoencoders which have the same structure as
autoencoders but they learn a distribution over the hidden variables

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21


