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Module 21.2: Variational Autoencoders: The Neural
Network Perspective
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Let {X = xi}Ni=1 be the training data

We can think of X as a random variable in Rn

For example, X could be an image and the
dimensions of X correspond to pixels of the
image

We are interested in learning an abstraction
(i.e., given an X find the hidden
representation z)

We are also interested in generation (i.e.,
given a hidden representation generate an X)

In probabilistic terms we are interested in
P (z|X) and P (X|z) (to be consistent with the
literation on VAEs we will use z instead of H
and X instead of V )
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v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Earlier we saw RBMs where we learnt P (z|X)
and P (X|z)

Below we list certain characteristics of RBMs

Structural assumptions: We assume
certain independencies in the Markov
Network

Computational: When training with Gibbs
Sampling we have to run the Markov Chain
for many time steps which is expensive

Approximation: When using Contrastive
Divergence, we approximate the expectation
by a point estimate

(Nothing wrong with the above but we just
mention them to make the reader aware of
these characteristics)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/11

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Earlier we saw RBMs where we learnt P (z|X)
and P (X|z)
Below we list certain characteristics of RBMs

Structural assumptions: We assume
certain independencies in the Markov
Network

Computational: When training with Gibbs
Sampling we have to run the Markov Chain
for many time steps which is expensive

Approximation: When using Contrastive
Divergence, we approximate the expectation
by a point estimate

(Nothing wrong with the above but we just
mention them to make the reader aware of
these characteristics)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/11

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Earlier we saw RBMs where we learnt P (z|X)
and P (X|z)
Below we list certain characteristics of RBMs

Structural assumptions: We assume
certain independencies in the Markov
Network

Computational: When training with Gibbs
Sampling we have to run the Markov Chain
for many time steps which is expensive

Approximation: When using Contrastive
Divergence, we approximate the expectation
by a point estimate

(Nothing wrong with the above but we just
mention them to make the reader aware of
these characteristics)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/11

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Earlier we saw RBMs where we learnt P (z|X)
and P (X|z)
Below we list certain characteristics of RBMs

Structural assumptions: We assume
certain independencies in the Markov
Network

Computational: When training with Gibbs
Sampling we have to run the Markov Chain
for many time steps which is expensive

Approximation: When using Contrastive
Divergence, we approximate the expectation
by a point estimate

(Nothing wrong with the above but we just
mention them to make the reader aware of
these characteristics)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/11

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Earlier we saw RBMs where we learnt P (z|X)
and P (X|z)
Below we list certain characteristics of RBMs

Structural assumptions: We assume
certain independencies in the Markov
Network

Computational: When training with Gibbs
Sampling we have to run the Markov Chain
for many time steps which is expensive

Approximation: When using Contrastive
Divergence, we approximate the expectation
by a point estimate

(Nothing wrong with the above but we just
mention them to make the reader aware of
these characteristics)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



3/11

v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Earlier we saw RBMs where we learnt P (z|X)
and P (X|z)
Below we list certain characteristics of RBMs

Structural assumptions: We assume
certain independencies in the Markov
Network

Computational: When training with Gibbs
Sampling we have to run the Markov Chain
for many time steps which is expensive

Approximation: When using Contrastive
Divergence, we approximate the expectation
by a point estimate

(Nothing wrong with the above but we just
mention them to make the reader aware of
these characteristics)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



4/11

z

Data: X

Encoder Qθ(z|X)

Reconstruction: X̂

Decoder Pφ(X|z)

θ: the parameters of the encoder
neural network
φ: the parameters of the decoder
neural network

We now return to our goals

Goal 1: Learn a distribution over the latent
variables (Q(z|X))

Goal 2: Learn a distribution over the visible
variables (P (X|z))
VAEs use a neural network based encoder for
Goal 1

and a neural network based decoder for Goal
2

We will look at the encoder first
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X

z

Qθ(z|X)

X ∈ Rn, µ ∈ Rm and Σ ∈ Rm×m

Encoder: What do we mean when we say
we want to learn a distribution?

We mean
that we want to learn the parameters of the
distribution

But what are the parameters of Q(z|X)?

Well it depends on our modeling
assumption!

In VAEs we assume that the latent variables
come from a standard normal distribution
N (0, I) and the job of the encoder is to then
predict the parameters of this distribution
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Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i
Now what about the decoder?

The job of the decoder is to predict a
probability distribution over X : P (X|z)
Once again we will assume a certain form for
this distribution

For example, if we want to predict 28 x 28
pixels and each pixel belongs to R (i.e., X ∈
R784) then what would be a suitable family
for P (X|z)?
We could assume that P (X|z) is a Gaussian
distribution with unit variance

The job of the decoder f would then be to
predict the mean of this distribution as fφ(z)
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Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i
What would be the objective function of the
decoder ?

For any given training sample xi it should
maximize P (xi) given by

P (xi) =

ˆ
P (z)P (xi|z)dz

= −Ez∼Qθ(z|xi)[logPφ(xi|z)]

(As usual we take log for numerical stability)
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Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

KL divergence captures
the difference (or distance)
between 2 distributions

This is the loss function for one data point
(li(θ)) and we will just sum over all the data
points to get the total loss L (θ)

L (θ) =

m∑
i=1

li(θ)

In addition, we also want a constraint on the
distribution over the latent variables

Specifically, we had assumed P (z) to be
N (0, I) and we want Q(z|X) to be as close
to P (z) as possible

Thus, we will modify the loss function such
that

li(θ, φ) = −Ez∼Qθ(z|xi)[logPφ(xi|z)]
+KL(Qθ(z|xi)||P (z))
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li(θ, φ) = −Ez∼Qθ(z|xi)[logPφ(xi|z)]
+KL(Qθ(z|xi)||P (z))

The second term in the loss function can actually be
thought of as a regularizer

It ensures that the encoder does not cheat by mapping
each xi to a different point (a normal distribution with
very low variance) in the Euclidean space

In other words, in the absence of the regularizer the
encoder can learn a unique mapping for each xi and
the decoder can then decode from this unique mapping

Even with high variance in samples from the
distribution, we want the decoder to be able to
reconstruct the original data very well (motivation
similar to the adding noise)

To summarize, for each data point we predict a
distribution such that, with high probability a sample
from this distribution should be able to reconstruct
the original data point

But why do we choose a normal distribution? Isn’t
it too simplistic to assume that z follows a normal
distribution
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li(θ, φ) = −Ez∼Qθ(z|xi)[logPφ(xi|z)]
+KL(Qθ(z|xi)||P (z))

Isn’t it a very strong assumption that P (z) ∼
N (0, I) ?

For example, in the 2-dimensional case how
can we be sure that P (z) is a normal
distribution and not any other distribution

The key insight here is that any distribution
in d dimensions can be generated by the
following steps

Step 1: Start with a set of d variables that are
normally distributed (that’s exactly what we
are assuming for P (z))

Step 2: Mapping these variables through a
sufficiently complex function (that’s exactly
what the first few layers of the decoder can
do)
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li(θ, φ) = −Ez∼Qθ(z|xi)[logPφ(xi|z)]
+KL(Qθ(z|xi)||P (z))

In particular, note that in the adjoining example if z
is 2-D and normally distributed then f(z) is roughly
ring shaped (giving us the distribution in the bottom
figure)

f(z) =
z

10
+

z

||z||

A non-linear neural network, such as the one we use
for the decoder, could learn a complex mapping from
z to fφ(z) using its parameters φ

The initial layers of a non linear decoder could learn
their weights such that the output is fφ(z)

The above argument suggests that even if we start with
normally distributed variables the initial layers of the
decoder could learn a complex transformation of these
variables say fφ(z) if required

The objective function of the decoder will ensure
that an appropriate transformation of z is learnt to
reconstruct X
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