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Module 21.3: Variational autoencoders: (The graphical
model perspective)
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Here we can think of z and X as random
variables

We are then interested in the joint probability
distribution P (X, z) which factorizes
as P (X, z) = P (z)P (X|z)
This factorization is natural because we can
imagine that the latent variables are fixed first
and then the visible variables are drawn based
on the latent variables

For example, if we want to draw a digit we
could first fix the latent variables: the digit,
size, angle, thickness, position and so on and
then draw a digit which corresponds to these
latent variables

And of course, unlike RBMs, this is a directed
graphical model
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Now at inference time, we are given an X (observed
variable) and we are interested in finding the most
likely assignments of latent variables z which would
have resulted in this observation

Mathematically, we want to find

P (z|X) =
P (X|z)P (z)

P (X)

This is hard to compute because the LHS contains
P (X) which is intractable

P (X) =

ˆ
P (X|z)P (z)dz

=

ˆ ˆ
...

ˆ
P (X|z1, z2, ..., zn)P (z1, z2, ..., zn)dz1, ...dzn

In RBMs, we had a similar integral which we
approximated using Gibbs Sampling

VAEs, on the other hand, cast this into an
optimization problem and learn the parameters of the
optimization problem
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Specifically, in VAEs, we assume that instead
of P (z|X) which is intractable, the posterior
distribution is given by Qθ(z|X)

Further, we assume that Qθ(z|X) is a
Gaussian whose parameters are determined by
a neural network µ, Σ = gθ(X)

The parameters of the distribution are thus
determined by the parameters θ of a neural
network

Our job then is to learn the parameters of this
neural network
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But what is the objective function for this
neural network

Well we want the proposed distribution
Qθ(z|X) to be as close to the true distribution

We can capture this using the following
objective function

minimize KL(Qθ(z|X)||P (z|X))

What are the parameters of the objective
function ?

(they are the parameters of the
neural network - we will return back to this
again)
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Let us expand the KL divergence term

D[Qθ(z|X)||P (z|X)]

=

ˆ
Qθ(z|X) logQθ(z|X)dz −

ˆ
Qθ(z|X) logP (z|X)dz

= Ez∼Qθ(z|X)[logQθ(z|X)− logP (z|X)]

For shorthand we will use EQ = Ez∼Qθ(z|X)

Substituting P (z|X) = P (X|z)P (z)
P (X) , we get

D[Qθ(z|X)||P (z|X)] = EQ[logQθ(z|X)− logP (X|z)− logP (z) + logP (X)]

= EQ[logQθ(z|X)− logP (z)]− EQ[logP (X|z)] + logP (X)

= D[Qθ(z|X)||p(z)]− EQ[logP (X|z)] + logP (X)

∴ log p(X) = EQ[logP (X|z)]−D[Qθ(z|X)||P (z)] +D[Qθ(z|X)||P (z|X)]
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So, we have

logP (X) = EQ[logP (X|z)]−D[Qθ(z|X)||P (z)] +D[Qθ(z|X)||P (z|X)]

Recall that we are interested in maximizing the log likelihood of the data i.e.
P (X)
Since KL divergence (the red term) is always >= 0 we can say that

EQ[logP (X|z)]−D[Qθ(z|X)||P (z)] <= logP (X)

The quantity on the LHS is thus a lower bound for the quantity that we want
to maximize and is knows as the Evidence lower bound (ELBO)
Maximizing this lower bound is the same as maximizing logP (X) and hence
our equivalent objective now becomes

maximize EQ[logP (X|z)]−D[Qθ(z|X)||P (z)]

And, this method of learning parameters of probability distributions
associated with graphical models using optimization (by maximizing ELBO) is
called variational inference
Why is this any easier? It is easy because of certain assumptions that we make
as discussed on the next slide
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First we will just reintroduce the parameters in the
equation to make things explicit

maximize EQ[logPφ(X|z)]−D[Qθ(z|X)||P (z)]

At training time, we are interested in learning the
parameters θ which maximize the above for every
training example (xi ∈ {xi}Ni=1)

So our total objective function is

maximize
θ

N∑
i=1

EQ[logPφ(X = xi|z)]

−D[Qθ(z|X = xi)||P (z)]

We will shorthand P (X = xi) as P (xi)

However, we will assume that we are using stochastic
gradient descent so we need to deal with only one of the
terms in the summation corresponding to the current
training example
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So our objective function w.r.t. one example is

maximize
θ

EQ[logPφ(xi|z)]−D[Qθ(z|xi)||P (z)]

Now, first we will do a forward prop through the
encoder using Xi and compute µ(X) and Σ(X)

The second term in the above objective function
is the difference between two normal distribution
N (µ(X),Σ(X)) and N (0, I)

With some simple trickery you can show that this term
reduces to the following expression (Seep proof here)

D[N (µ(X),Σ(X))||N (0, I)]

=
1

2
(tr(Σ(X)) + (µ(X))T [µ(X))− k − log det(Σ(X))]

where k is the dimensionality of the latent variables

This term can be computed easily because we have
already computed µ(X) and Σ(X) in the forward pass
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Now let us look at the other term in the
objective function

n∑
i=1

EQ[logPφ(X|z)]

This is again an expectation and hence
intractable (integral over z)

In VAEs, we approximate this with a single z
sampled from N (µ(X),Σ(X))

Hence this term is also easy to compute (of
course it is a nasty approximation but we will
live with it!)
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Further, as usual, we need to assume some
parametric form for P (X|z)

For example, if we assume that P (X|z) is a
Gaussian with mean µ(z) and variance I then

logP (X = Xi|z) = C − 1

2
||Xi − µ(z)||2

µ(z) in turn is a function of the parameters of
the decoder and can be written as fφ(z)

logP (X = Xi|z) = C − 1

2
||Xi − fφ(z)||2

Our effective objective function thus becomes

minimize
θ,φ

N∑
n=1

[
1

2
(tr(Σ(Xi)) + (µ(Xi))

T [µ(Xi))− k

− log det(Σ(Xi))] + ||Xi − fφ(z)||2
]
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The above loss can be easily computed and we
can update the parameters θ of the encoder
and φ of decoder using backpropagation

However, there is a catch !

The network is not end to end differentiable
because the output fφ(z) is not an end to end
differentiable function of the input X

Why?

because after passing X through the
network we simply compute µ(X) and Σ(X)
and then sample a z to be fed to the decoder

This makes the entire process non-
deterministic and hence fφ(z) is not a
continuous function of the input X
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VAEs use a neat trick to get around this
problem

This is known as the reparameterization trick
wherein we move the process of sampling to
an input layer

For 1 dimensional case, given µ and σ we can
sample from N (µ, σ) by first sampling ε ∼
N (0, 1), and then computing

z = µ+ σ ∗ ε

The adjacent figure shows the difference
between the original network and the
reparamterized network

The randomness in fφ(z) is now associated
with ε and not X or the parameters of the
model

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



13/16

Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

VAEs use a neat trick to get around this
problem

This is known as the reparameterization trick
wherein we move the process of sampling to
an input layer

For 1 dimensional case, given µ and σ we can
sample from N (µ, σ) by first sampling ε ∼
N (0, 1), and then computing

z = µ+ σ ∗ ε

The adjacent figure shows the difference
between the original network and the
reparamterized network

The randomness in fφ(z) is now associated
with ε and not X or the parameters of the
model

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



13/16

Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

VAEs use a neat trick to get around this
problem

This is known as the reparameterization trick
wherein we move the process of sampling to
an input layer

For 1 dimensional case, given µ and σ we can
sample from N (µ, σ) by first sampling ε ∼
N (0, 1), and then computing

z = µ+ σ ∗ ε

The adjacent figure shows the difference
between the original network and the
reparamterized network

The randomness in fφ(z) is now associated
with ε and not X or the parameters of the
model

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



13/16

∗

+

ε ∼ N (0, I)

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

VAEs use a neat trick to get around this
problem

This is known as the reparameterization trick
wherein we move the process of sampling to
an input layer

For 1 dimensional case, given µ and σ we can
sample from N (µ, σ) by first sampling ε ∼
N (0, 1), and then computing

z = µ+ σ ∗ ε

The adjacent figure shows the difference
between the original network and the
reparamterized network

The randomness in fφ(z) is now associated
with ε and not X or the parameters of the
model

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



13/16

∗

+

ε ∼ N (0, I)

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

VAEs use a neat trick to get around this
problem

This is known as the reparameterization trick
wherein we move the process of sampling to
an input layer

For 1 dimensional case, given µ and σ we can
sample from N (µ, σ) by first sampling ε ∼
N (0, 1), and then computing

z = µ+ σ ∗ ε

The adjacent figure shows the difference
between the original network and the
reparamterized network

The randomness in fφ(z) is now associated
with ε and not X or the parameters of the
model

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



14/16

Data: {Xi}Ni=1

Model: X̂ = fφ(µ(X)+Σ(X)∗ ε)
Parameters: θ, φ

Algorithm: Gradient descent

Objective:

N∑
n=1

[
1

2
(tr(Σ(Xi)) + (µ(Xi))

T [µ(Xi))

− k − log det(Σ(Xi))] + ||Xi − fφ(z)||2
]

With that we are done with the process of
training VAEs

Specifically, we have described the data,
model, parameters, objective function and
learning algorithm

Now what happens at test time? We need to
consider both abstraction and generation

In other words we are interested in computing
a z given a X as well as in generating a X
given a z

Let us look at each of these goals
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∗

+

ε ∼ N (0, I)

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

Abstraction

After the model parameters are learned we
feed a X to the encoder

By doing a forward pass using the learned
parameters of the model we compute µ(X)
and Σ(X)

We then sample a z from the distribution
µ(X) and Σ(X) or using the same
reparameterization trick

In other words, once we have obtained
µ(X) and Σ(X), we first sample ε ∼
N (µ(X),Σ(X)) and then compute z

z = µ+ σ ∗ ε
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∗

+

ε ∼ N (0, I)

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

Generation

After the model parameters are learned we
remove the encoder and feed a z ∼ N (0, I)
to the decoder

The decoder will then predict fφ(z) and we
can draw an X ∼ N (fφ(z), I)

Why would this work ?

Well, we had trained the model to minimize
D(Qθ(z|X)||p(z)) where p(z) was N (0, I)

If the model is trained well then Qθ(z|X)
should also become N (0, I)

Hence, if we feed z ∼ N (0, I), it is almost
as if we are feeding a z ∼ Qθ(z|X) and the
decoder was indeed trained to produce a good
fφ(z) from such a z

Hence this will work !
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