Module 3.3: Learning Parameters: (Infeasible) guess
work
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With this setup in mind, we will now focus
on this model and discuss an algorithm for
learning the parameters of this model from
some given data using an appropriate ob-
jective function
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e o stands for the sigmoid function (logistic
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x m = f(z) e With this setup in mind, we will now focus
/\J on this model and discuss an algorithm for
1 learning the parameters of this model from

some given data using an appropriate ob-
jective function

e o stands for the sigmoid function (logistic
function in this case)

o For ease of explanation, we will consider a
very simplified version of the model having
just 1 input
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T — o = f(z) e With this setup in mind, we will now focus
/\J on this model and discuss an algorithm for
b

1 learning the parameters of this model from
some given data using an appropriate ob-
flx) = m jective function

e o stands for the sigmoid function (logistic
function in this case)

o For ease of explanation, we will consider a
very simplified version of the model having
just 1 input

o Further to be consistent with the literature,
from now on, we will refer to wg as b (bias)
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T — Q = f(z) e With this setup in mind, we will now focus
W on this model and discuss an algorithm for
b

1 learning the parameters of this model from
some given data using an appropriate ob-
flx) = m jective function

e o stands for the sigmoid function (logistic
function in this case)

o For ease of explanation, we will consider a
very simplified version of the model having
just 1 input

o Further to be consistent with the literature,
from now on, we will refer to wg as b (bias)

o Lastly, instead of considering the problem of
predicting like/dislike, we will assume that
we want to predict criticsRating(y) given
imdbRating(x) (for no particular reason)
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w/\J Input for training
b

{xiayi}i]\il — N pairs of (z,y)
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x m 7= f(x
M/K—J ) Input for training
b

{xiayi}i]\il — N pairs of (z,y)

Training objective
Find w and b such th]%t:
L Z(w,b) = Z(yZ f(zi))

p=ll
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x m 7= f(x
M/K—J ) Input for training
b

{xiayi}i]\il — N pairs of (z,y)

flz) = m Training objective
Find w and b such th]%t:
minimize £ (w,b) = > (v — f(2:))?

p=ll

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 3



T — m g=f(x) ' :
/\J What does it mean to train the network?
b @ Suppose we train the network with

(x,y) = (0.5,0.2) and (2.5,0.9)

§2.5,0.9)

02 §05,0.2)
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T — m g=f(x) ' :
/\J What does it mean to train the network?
b @ Suppose we train the network with
(x,y) = (0.5,0.2) and (2.5,0.9)

flx) = —Ltor o At the end of training we expect to
find w*, b* such that:

§2.5,0.9)

02 §05,0.2)
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T — m g=f(x) ' :
/\J What does it mean to train the network?
b @ Suppose we train the network with
(x,y) = (0.5,0.2) and (2.5,0.9)

flx) = —Ltor o At the end of training we expect to
find w*, b* such that:

e f(0.5) = 0.2 and f(2.5) — 0.9

§2.5,0.9)

02 §05,0.2)
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What does it mean to train the network?
@ Suppose we train the network with
(x,y) = (0.5,0.2) and (2.5,0.9)
@ At the end of training we expect to
find w*, b* such that:

e f(0.5) = 0.2 and f(2.5) — 0.9

In other words...

e We hope to find a sigmoid function
such that (0.5,0.2) and (2.5,0.9) lie
on this sigmoid

o’
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What does it mean to train the network?
@ Suppose we train the network with
(x,y) = (0.5,0.2) and (2.5,0.9)
@ At the end of training we expect to
find w*, b* such that:

e f(0.5) = 0.2 and f(2.5) — 0.9

In other words...

e We hope to find a sigmoid function
such that (0.5,0.2) and (2.5,0.9) lie
on this sigmoid
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Let us see this in more detail....
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e Can we try to find such a wx, bx manually
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e Can we try to find such a wx, bx manually

10 e Let us try a random guess.. (say, w = 0.5,b = 0)
25.09
08 ‘ '
s
os
02 40.5,0.2)
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e Can we try to find such a wx, bx manually

10 e Let us try a random guess.. (say, w = 0.5,b = 0)
42.5,0.9)

0s e Clearly not good, but how bad is it ?

0.2 §0.5,0.2)

— w=0.50, b=0.00
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e Can we try to find such a wx, bx manually
10 e Let us try a random guess.. (say, w = 0.5,b = 0)
0s P e Clearly not good, but how bad is it ?
~0s o Let us revisit Z(w,b) to see how bad it is ...
02 $05.02

— w=0.50, b=0.00

sh M. Khapra 7015 (Deep Learning Lecture 3



N
) 1
’ L(w,b) =2 %> (yi — fla:))?
o8 2 i=1
> 0.6
0.4
0.2 40.5,0.2)

M. Khapra JS701



40.5,0.2)

42.5,0.9)

Z(w,b)

— w=0.50, b=0.00
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« (g1 — f(21))” + (y2 — f(22))”
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1.0
0.8
> 0.6
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0.2
[—_wmose b=0w0)

40.5,0.2)

42.5,0.9)

Z(w,b)
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% (0.9 — £(2.5))% + (0.2 — £(0.5))*

1 al 2

= 5= F) + (0~ f(22))?
1
2
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1.0
0.8
> 0.6
0.4
0.2

40.5,0.2)

42.5,0.9)

Z(w,b)

Mitesh M. Khapra

B 1 N 2

= 5= F) + (0~ f(22))?

_ % (0.9 — £(25)2 + (0.2 — £(0.5))2
=0.073
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1 &
4§25,0.9) f(w, b) — 5 * Z(yl - f(x’t))Q
08 1=1
= e @)+ (g ()
= 5+ (09— F25)7 + (0.2~ f(0.5))?
N B — 0.073

We want .2 (w, b) to be as close to 0 as possible
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42.5,0.9)

40.5,0.2)

— w=0.50, b=0.00

Let us try some other values of w, b

sh M. Khapra

w b ZL(w,b)

0.50 0.00 0.0730
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Let us try some other values of w, b

L 500 w b Z(w,b)
o8 0.50 0.00 0.0730
o8 -0.10 0.00 0.1481

40.5,0.2)
— w=0.50, b=0.00

— w=-0.10, b=0.00

Oops!! this made things even worse...
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Let us try some other values of w, b

w0 . w b ZL(w,b)
0.50 0.00 0.0730

-0.10 0.00  0.1481
0.94 -0.94 0.0214

02} — w=0.50, b=0.00 40.5,0.2)
— w=-0.10, b=0.00
— w=0.94, b=-0.95

Perhaps it would help to push w and b in the
other direction...
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Let us try some other values of w, b

w b Z(w,b)
0.50 0.00 0.0730
-0.10 0.00  0.1481
094 -0.94 0.0214
1.42 -1.73 0.0028

w=0.50, b=0.00
w=-0.10, b=0.00 40.5,0.2)
w=0.94, b=-0.95
w=1.43, b=-1.74

Let us keep going in this direction, i.e., increase
w and decrease b
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Let us try some other values of w, b

10 oiae w b z(wa b)
0 % 0.50 0.00 0.0730
-0.10 0.00  0.1481

— 0.94 -0.94 0.0214
142 -1.73  0.0028

w=0.50, b=0.00
w=-0.10, b=0.00

. w=0.94, b=-0.95 40.5,0.2)

“l = weiasbm17a 1.65 -2.08 0.0003
w=1.65, b=-2.08

005 -4 -2 0 2 4 6

Let us keep going in this direction, i.e., increase
w and decrease b
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Let us try some other values of w, b

w b ZL(w,b)
0.50 0.00 0.0730

-0.10 0.00  0.1481
0.94 -0.94 0.0214

M| = wmoan eose 142 -1.73  0.0028
N T e 20 1.65 -2.08 0.0003
e T 1.78  -2.27  0.0000

With some guess work and intuition we were able
to find the right values for w and b
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Let us look at something better than our “quess work”
algorithm....
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@ Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where Z(w,b) is
minimum
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@ Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where Z(w,b) is
minimum

Random search on error surface

error

. . . L . L L .
0.08 016 024 032 040 048 056 0.64
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@ Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where Z(w,b) is
minimum

Random search on error surface

error

@ But of course this becomes intract-
able once you have many more data
points and many more parameters !!

. . . L . L L .
0.08 016 024 032 040 048 056 0.64
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@ Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where Z(w,b) is
minimum

Random search on error surface

But of course this becomes intract-
able once you have many more data
points and many more parameters !!

error
(]

o Further, even here we have plotted
the error surface only for a small
range of (w, b) [from (—6,6) and not
from (— inf,inf)]

. . . L . L L .
0.08 016 024 032 040 048 056 0.64

Mitesh M. Khapra 7015 (Deep Learning Lecture 3



Let us look at the geometric interpretation of our
“guess work” algorithm in terms of this error surface
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Random search on error surface

§2.5,0.9)

error
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T T T T T Random search on error surface
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T T T T T Random search on error surface
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T T T T T Random search on error surface
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T T T T T Random search on error surface

error

— w=0.50, b=0.00
02l — w=-0.10, b=0.00
— w=0.94, b=-0.95
— w=1.43,b=-1.74
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T T T T T Random search on error surface
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10+

0.8 -

0.2+

0.0

— w=0.50, b=0.00
— w=-0.10, b=0.00
— w=0.94, b=-0.95
— w=1.43,b=-1.74

w=1.65, b=-2.08
— w=1.79, b=-2.28
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