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Module 4.1: Feedforward Neural Networks (a.k.a.
multilayered network of neurons)
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@ The input to the network is an n-dimensional
vector
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@ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

o Finally, there is one output layer containing k
neurons (say, corresponding to k classes)
Q Q Q e Each neuron in the hidden layer and output layer

can be split into two parts :
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@ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

o Finally, there is one output layer containing k

e Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation

Q neurons (say, corresponding to k classes)
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Wy — g — @ The input to the network is an n-dimensional
r=9=7@ vector
e The network contains L — 1 hidden layers (2, in
as this case) having n neurons each
b o Finally, there is one output layer containing k
2 neurons (say, corresponding to k classes)
Q Q Q e Each neuron in the hidden layer and output layer
az can be split into two parts : pre-activation and
hy activation
ai
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as this case) having n neurons each
b o Finally, there is one output layer containing k
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(@) @ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

as
b o Finally, there is one output layer containing k
2 neurons (say, corresponding to k classes)
Q Q Q e Each neuron in the hidden layer and output layer
az can be split into two parts : pre-activation and
hi
ai

activation (a; and h; are vectors)

@ The input layer can be called the 0-th layer and
Q Q the output layer can be called the (L)-th layer
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Tn

o
1

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer

W; € R™" and b; € R™ are the weight and bias
between layers ¢ — 1 and ¢ (0 < i < L)
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W — i — o The input to the network is an n-dimensional
L=i=7 vector

@ The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

o The input layer can be called the 0-th layer and
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The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

o The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer
W; € R™™ and b; € R™ are the weight and bias
between layers ¢ — 1 and ¢ (0 < i < L)

Wi, € R™* and by, € R* are the weight and bias
between the last hidden layer and the output layer
(L = 3 in this case)
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o The pre-activation at layer ¢ is given by
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o The pre-activation at layer ¢ is given by
a;j(x) = b; + Wihi—1(x)
o The activation at layer 7 is given by

hi(z) = g(ai(x))
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where ¢ is called the activation function (for
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hy =9 = f(z) o The pre-activation at layer ¢ is given by
ai(z) = b; + Wih;_1(x)
The activation at layer ¢ is given by
hi(z) = g(ai(z))

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

The activation at the output layer is given by

f(@) = hy(z) = O(ar(z))

where O is the output activation function (for
example, softmax, linear, etc.)

To simplify notation we will refer to a;(x) as a;
and h;(z) as h;
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o The pre-activation at layer ¢ is given by
a; = b; + Wih;—
o The activation at layer 7 is given by
hi = g(ai)

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

o The activation at the output layer is given by

f(z) =hy = O(ar)

where O is the output activation function (for
example, softmax, linear, etc.)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



1

N

e Data: {z;,y;},

g=f(=

hr =

a
)
e
$
—
=1
2
£
5
=1




1

N

e Data: {z;,y;};

a
)
e
$
-
=1
2
£
5
=1




1

N
1=

o Data: {z;,v:},

Lecture 4

ng):

(Deep Learni

CS7015

a
&
v
%
-
=
o
=
g
=




e Data: {xiayi}i]\il
e Model:

Ui = f(xz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:
0= Wl, . WL, bl, bg, ceey bL(L = 3)
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e Data: {miayi}i]\il
e Model:

Ui = f(xz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:

0= Wl, . WL, bl, bg, ceey bL(L = 3)
5 @ Algorithm:  Gradient Descent with Back-
propagation (we will see soon)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



e Data: {-fz'ayi}i]\;l
e Model:

Ui = f(xz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:

0= Wl, . WL, bl, bg, ceey bL(L = 3)
5 @ Algorithm:  Gradient Descent with Back-
propagation (we will see soon)

e Objective/Loss/Error function: Say,

| Nk
min ZZ(Q@' — ij)?

i=1 j=1

In general, min £ (0)

where Z(0) is some function of the parameters
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Module 4.2: Learning Parameters of Feedforward
Neural Networks (Intuition)
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The story so far...
@ We have introduced feedforward neural networks

@ We are now interested in finding an algorithm for learning the parameters of
this model

Mitesh M. Khapra 7015 (Deep Learning): Lecture 4



@ Recall our gradient descent algorithm
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hy =y = f(z) @ Recall our gradient descent algorithm

Algorithm: gradient_descent()

t <+ 0;
max_iterations <— 1000;
Initialize wq, by;
while t++ < maz_iterations do
Wiy < wy — NVwy;
b1 < by — nVby;
end
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@ Recall our gradient descent algorithm

@ We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;
max_iterations <— 1000;
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b1 < by — nVby;
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@ Recall our gradient descent algorithm

@ We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;

max_iterations <— 1000;

Initialize 6y = [wo, byl;

while t++ < maz_iterations do
| 01 < 6 — V0

end
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@ Recall our gradient descent algorithm

@ We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;

max_iterations <— 1000;

Initialize 6y = [wo, byl;

while t++ < maz_iterations do
| 01 < 6 — V0

end

o where V6, = [3-’83”115?)7 3.,;3(159)]T
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@ Recall our gradient descent algorithm

@ We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;

max_iterations <— 1000;

Initialize 6y = [wo, byl;

while t++ < maz_iterations do
| 01 < 6 — V0

end

o where V6, = [a:;iff)’ a";?ie)

o Now, in this feedforward neural network,
instead of 6 = J[w,b] we have 0 =
(W, Wa, .., Wr, b1, ba, .., br]

]T
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Recall our gradient descent algorithm

We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;

max_iterations <— 1000;

Initialize 6y = [wo, byl;

while t++ < maz_iterations do
| 01 < 6 — V0

end

Mitesh M. Khapra

where V6, = [aift@), &;ﬁb(te)]T

Now, in this feedforward neural network,
instead of 6 = J[w,b] we have 0 =
(W1, Wa, .., W, b1, ba, .., by

We can still use the same algorithm for
learning the parameters of our model
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@ Recall our gradient descent algorithm

@ We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;
max_iterations <— 1000;
Initialize 0y = [W{, .., W09, .. b0
while t++ < maz_iterations do
| 01 < 6 — V0

end
_ro20)  o2(0) aZ0) 0L0)1T
e where V6, = [awl,t 1 AWy Dby 07 abL,t]
o Now, in this feedforward neural network,
instead of 6 = [w,b] we have 0 =

(W1, Wa, .., WL, b1, b, .., by
o We can still use the same algorithm for
learning the parameters of our model
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o Except that now our V@ looks much more nasty
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o Except that now our V@ looks much more nasty
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o Except that now our V@ looks much more nasty

ro.2(0) 2.2(0) 8.2(0) 0.2(0) 0.2(0) 0.2(0) 8.2(0) 1
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o Except that now our V@ looks much more nasty
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o Except that now our V@ looks much more nasty

ro.2(0) 2.2(0) 8.2(0) 0.2(0) 0.2(0) 0.2(0) 02(0) 9£(0) 0.2(6)7
oWiir "0 OWiin OWorn 7 OWain "7 OWpar T OWpak OWpax 0Obin T 0Obpa
2.2(6) 2.2(0) 8.2(6) 2.2(6) 2.2(0) 2.2(0) 0.20) 9.£(0) 2.2(6)
OWiar " OWiap OWaar *°° OWaay 70 OWpor 77 OWpor OWpror 0Obiz °°° Obra
0.2(0) 0.2(0) 0.2(0) 0.2(0) 0.2(0) 0.2(0) 0.2(0) L) 0.2(0)

_awlnl U OWinn OWan1 T OWapp T aI/VL,nl U 8VVL,nk: QWL,nk Ob1n, Tt Obrg a

o V@ is thus composed of
VWi, VWs, .. VW_4 € Rnxn’ VWi, € RnXk,
Vbi, Vb, ...,.Vbr_1 € R” and Vb, € RF
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We need to answer two questions
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We need to answer two questions
e How to choose the loss function .#(6)?
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We need to answer two questions
e How to choose the loss function .#(6)?

e How to compute V@ which is composed of
VWi, VWa, ..., VWi_1 € R™" VW € R*¥k
Vbl, ng, ...,VbL_l € R™ and Vb, € Rk ?
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Module 4.3: Output Functions and Loss Functions
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We need to answer two questions
e How to choose the loss function .Z(0) ?

e How to compute V@ which is composed of:
VWi, VWa,...,VWi_1 € R™" VW € R**k
Vbl, ng, ...,VbL_l € R™ and Vb, € Rk ?
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We need to answer two questions
e How to choose the loss function .Z(0) ?

e How to compute V@ which is composed of:
VWi, VWa,...,VWi_1 € R™" VW € R**k
Vbl, ng, ...,VbL_l € R™ and Vb, € Rk ?
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@ The choice of loss function depends
on the problem at hand
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@ The choice of loss function depends
on the problem at hand

o We will illustrate this with the help
of two examples
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@ The choice of loss function depends

yi =A{7.5 8.2 7.7} on the problem at hand
imdb Critics RT o We will illustrate this with the help
Rating  Rating  Rating of two examples
T T T o Consider our movie example again
but this time we are interested in

predicting ratings
Neural network with
L — 1 hidden layers

LT T

isActor isDirector

Damon ° * Nolam * * * * * * * =
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@ The choice of loss function depends
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imdb Critics RT o We will illustrate this with the help
Rating  Rating  Rating of two examples
T T T o Consider our movie example again
but this time we are interested in

predicting ratings

Neural network with Here y; € R3

L — 1 hidden layers

LT T
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Damon * * Nolan
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@ The choice of loss function depends

yi =A{7.5 8.2 7.7} on the problem at hand
imdb Critics RT o We will illustrate this with the help
Rating  Rating  Rating of two examples
T T T o Consider our movie example again
but this time we are interested in

predicting ratings
Neural network with o Here y; € R3
L — 1 hidden layers

LT T

isActor isDirector

@ The loss function should capture how
much ¢; deviates from y;

Damon * * Nolan
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@ The choice of loss function depends

yi =A{7.5 8.2 7.7} on the problem at hand
imdb Critics RT o We will illustrate this with the help
Rating  Rating  Rating of two examples
T T T o Consider our movie example again
but this time we are interested in

predicting ratings
Neural network with o Here y; € R3

L —1 hidden layers @ The loss function should capture how

much ¢; deviates from y;

T T T T T T o If y; € R™ then the squared error loss
can capture thls dev1at10n
isActor isDirector
Damon * * Nolan * ° * * * * * ° Z Z yz; yzy
€; i=1 j=1

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



o A related question: What should the
output function ‘O’ be if y; € R?
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o A related question: What should the
output function ‘O’ be if y; € R?

o More specifically, can it be the logistic
function?
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o A related question: What should the
output function ‘O’ be if y; € R?

o More specifically, can it be the logistic
function?

@ No, because it restricts ¢; to a value
between 0 & 1 but we want ¢; € R
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o A related question: What should the
output function ‘O’ be if y; € R?

o More specifically, can it be the logistic
function?

@ No, because it restricts ¢; to a value
between 0 & 1 but we want ¢; € R

@ So, in such cases it makes sense to
have ‘O’ as linear function

f(z) =hr = O(ar)
= Woar, + bo
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o A related question: What should the
output function ‘O’ be if y; € R?

o More specifically, can it be the logistic
function?

@ No, because it restricts ¢; to a value
between 0 & 1 but we want ¢; € R

@ So, in such cases it makes sense to
have ‘O’ as linear function

f(z) =hr = O(ar)
= Woar, + bo

e yi = f(x;) is no longer bounded
between 0 and 1
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o Now let us consider another problem
y=11 0 0 0] for which a different loss function

Apple Mango Orange Banana would be appropriate

[ T T 1

Neural network with
L — 1 hidden layers
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o Now let us consider another problem

y=11 0 0 0] for which a different loss function
Apple Mango Orange Banana would be appropriate
@ Suppose we want to classify an image
T T T T into 1 of k classes

Neural network with
L — 1 hidden layers
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o Now let us consider another problem

y=11 0 0 0] for which a different loss function
Apple Mango Orange Banana would be appropriate
@ Suppose we want to classify an image
T T T T into 1 of k classes

e Here again we could use the squared
Neural network with error loss to capture the deviation
L — 1 hidden layers
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o Now let us consider another problem

y=11 0 0 0] for which a different loss function
Apple Mango Orange Banana would be appropriate
@ Suppose we want to classify an image
T T T T into 1 of k classes

e Here again we could use the squared

Neural network with error loss to capture the deviation
L — 1 hidden layers e But can you think of a better

function?
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o Notice that gy is a probability
y=11 0 0 0] distribution
Apple Mango Orange Banana

[ T T 1

Neural network with
L — 1 hidden layers
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o Notice that gy is a probability
y =1 0 0 0] distribution

Apple Mango Orange Banana o Therefore we should also ensure that

T T T T 7y is a probability distribution

Neural network with
L — 1 hidden layers
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o Notice that gy 1is a probability
distribution

@ Therefore we should also ensure that
1y is a probability distribution

e What choice of the output activation
‘O’ will ensure this ?

ar, =Wrhp—1 + b,
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o Notice that gy 1is a probability
distribution
@ Therefore we should also ensure that
1y is a probability distribution
e What choice of the output activation
‘O’ will ensure this ?
ap =Wrhp 1 +bg
ji = Olar); = —
G =0(ag); = ————
’ ’ Yo etk
O(ar); is the 5 element of § and ay, ;
is the j element of the vector ar,.
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o Notice that gy 1is a probability
distribution

@ Therefore we should also ensure that
1y is a probability distribution
e What choice of the output activation
‘O’ will ensure this 7
ar, = Wrhp_1 + b,

. et
9 = O(ar)j; = =5

>z €M

O(ar); is the 5 element of § and ay, ;
is the j element of the vector ar,.

e This function is called the softmaz
function
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@ Now that we have ensured that both

y=11 0 0 0] y & y are probability distributions
Apple Mango Orange Banana can you think of a function which
captures the difference between

T T T T them?

Neural network with
L — 1 hidden layers
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@ Now that we have ensured that both

y=11 0 0 0] y & y are probability distributions
Apple Mango Orange Banana can you think of a function which
captures the difference between

T T T T them?

e Cross-entropy

Neural network with

k
L — 1 hidden layers L(0) == yclog i
c=1
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@ Now that we have ensured that both

y=11 0 0 0] y & y are probability distributions
Apple Mango Orange Banana can you think of a function which
captures the difference between

T T T T them?

e Cross-entropy

Neural network with

k
L — 1 hidden layers L(0) == yclog i
c=1

@ Notice that

ye =1 if ¢ = £ (the true class label)
=0 otherwise
" Z(0) = —log gy
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e So, for classification problem (where you have
hr =19= f() to choose 1 of K classes), we use the following
objective function

miniemize Z(0) = —log 9

or maxiamize — Z(0) =log ys
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e So, for classification problem (where you have
to choose 1 of K classes), we use the following
objective function

miniemize Z(0) = —log 9

or maxiamize — Z(0) = log ye

o But wait!
Is gy a function of 0 = [Wy, Wa, ., W, b1,ba,.,br]?
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e So, for classification problem (where you have
to choose 1 of K classes), we use the following
objective function

miniemize Z(0) = —log 9
or maxiamize — Z(0) = log ye

o But wait!
Is gy a function of 0 = [Wy, Wa, ., W, b1,ba,.,br]?

@ Yes, it is indeed a function of 6
U¢ = [O(W39(Wag(Wix + b1) + ba) + b3)]e

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



e So, for classification problem (where you have
to choose 1 of K classes), we use the following
objective function

miniemize Z(0) = —log 9
or maxiamize — Z(0) = log ye

o But wait!
Is gy a function of 0 = [Wy, Wa, ., W, b1,ba,.,br]?

@ Yes, it is indeed a function of 6
9o = [O(W3g(Wag(Wiz + b1) + ba) + b3)]s
e What does ¢, encode?
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e So, for classification problem (where you have
hr =19= f() to choose 1 of K classes), we use the following
objective function

miniemize Z(0) = —log 9

or maxiamize — Z(0) = log ye

o But wait!
Is gy a function of 0 = [Wy, Wa, ., W, b1,ba,.,br]?
@ Yes, it is indeed a function of 6
U¢ = [O(W39(Wag(Wix + b1) + ba) + b3)]e
e What does ¢, encode?

1 o It is the probability that = belongs to the ¢*" class
' (bring it as close to 1).
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e So, for classification problem (where you have
hr =19= f() to choose 1 of K classes), we use the following
objective function

miniemize Z(0) = —log 9

or maxiemize — Z(0) = log ye

o But wait!
Is gy a function of 0 = [Wy, Wa, ., W, b1,ba,.,br]?
@ Yes, it is indeed a function of 6
U¢ = [O(W39(Wag(Wix + b1) + ba) + b3)]e
e What does ¢, encode?

1 o It is the probability that = belongs to the ¢*" class
(bring it as close to 1).

o log gy is called the log-likelihood of the data.
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Outputs

Real Values Probabilities

Output Activation

Loss Function
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Outputs

Real Values Probabilities

Output Activation Linear

Loss Function
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Outputs

Real Values Probabilities

Output Activation Linear Softmax

Loss Function
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Outputs

Real Values Probabilities

Output Activation Linear Softmax

Loss Function Squared Error
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Outputs

Real Values Probabilities

Output Activation

Linear

Softmax

Loss Function

Squared Error | Cross Entropy
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Outputs

Real Values Probabilities

Output Activation Linear Softmax

Loss Function Squared Error | Cross Entropy

@ Of course, there could be other loss functions depending on the problem at hand
but the two loss functions that we just saw are encountered very often
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Outputs

Real Values Probabilities

Output Activation Linear Softmax

Loss Function Squared Error | Cross Entropy

@ Of course, there could be other loss functions depending on the problem at hand
but the two loss functions that we just saw are encountered very often

o For the rest of this lecture we will focus on the case where the output activation
is a softmax function and the loss function is cross entropy
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Module 4.4: Backpropagation (Intuition)
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We need to answer two questions
e How to choose the loss function .Z(0) ?

e How to compute V@ which is composed of:
VWi, VWa,...,VWi_1 € R™" VW € R**k
Vbl, ng, ...,VbL_l € R™ and Vb, € Rk ?
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We need to answer two questions
e How to choose the loss function .Z(0) ?

e How to compute V@ which is composed of:
VW1, VWs,...,.VIWr_1 € R™" VW € R***
Vb1,Vbs,...,.Vbr,_1 € R” and Vb, € RF ?
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Algorithm: gradient
descent()

t <+ 0;
max_iterations —
1000;
Initialize 0Og;
while
t++ < max_terations
do
011+ 0y — VO
end

@ Let us focus on this one
Weight (Wug).
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@ Let us focus on this one
Weight (Wug).

o To learn this weight
using SGD we need a

8.2(8)
formula for Whis -

Mitesh M. Khapra

Algorithm: gradient
descent()

t <+ 0;

max_iterations —
1000;

Initialize 0Og;

while

t++ < max_iterations
do
Or41 < 0 — Vb
end
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@ Let us focus on this one
Weight (Wug).
o To learn this weight

using SGD we need a

8.2(8)
formula for Whis -

e We will see how to
calculate this.

Mitesh M. Khapra

Algorithm: gradient
descent()

t <+ 0;

max_iterations —
1000;

Initialize 0Og;

while

t++ < max_iterations
do
Or41 < 0 — Vb
end
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o First let us take the simple case when i — f(2)
we have a deep but thin network. Ty
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o First let us take the simple case when i = f(z)
we have a deep but thin network. Ty

o In this case it is easy to find the
derivative by chain rule. arr®™
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o First let us take the simple case when

we have a deep but thin network. Ty = J(@)
o In this case it is easy to find the
derivative by chain rule. apr™
:WLll
21!
63(9) _ 83(9) 63} 8&[,11 8h21 6(121 6h11 6a11
oWin 0y  Odapir Ohoy Oazr Ohiy Oary OWhny K
Wai1
h11
all/\
Wi
T
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o First let us take the simple case when ()

we have a deep but thin network. Ty = J(@)
o In this case it is easy to find the
derivative by chain rule. ap
:WLll
21!
0Z(0)  0L(0) 0y Odarii Ohar dag Ohy1 dan
oW 0y  Odari1 Ohgr Oagy Ohir Oarr OWiir K
Z (6 Z(6) Oh
ngn) = a@hfl) ;;Vil (just compressing the chain rule) hi Wan
all/\
Wi
T1
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o First let us take the simple case when ()

we have a deep but thin network. Ty = J(@)
o In this case it is easy to find the
derivative by chain rule. ap
Wi
9.L(0) _ 0.2(0) 95 Oapi Ohsy daz dhuy dany
OWinn 09 Odapin Ohay daz Ohyy darn OWiny 5

asy
%Vi[’;fi) = aj;ff) ;Wh/i; (just compressing the chain rule) hi Wan
02(6)  0.2(6) oh Q
OWo11 Oha1 OWany

air
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o First let us take the simple case when

y = f(x
we have a deep but thin network. Ty J(@)
o In this case it is easy to find the
derivative by chain rule. ap
Wi
21

63(9) _ (9‘,2”((9) (91:1 0(1,L11 (9]7,21 0&21 6h11 aan

8W111 (9?:/ 8(1L11 3;7,21 8(1,21 6h11 8&11 6W111 "
((9991/2[’;5191) - 852;519) 381;][211 (just compressing the chain rule) hut Wai1
OWar1  Ohar OWon -

0L(0)  0L(0) dary Wi
oWy Odari OWrn
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Let us see an intuitive explanation of backpropagation before we get into the
mathematical details
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@ We get a certain loss at the output and we try to
figure out who is responsible for this loss
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@ We get a certain loss at the output and we try to
figure out who is responsible for this loss

@ So, we talk to the output layer and say “Hey! You
are not producing the desired output, better take
responsibility”.
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@ We get a certain loss at the output and we try to —
figure out who is responsible for this loss

@ So, we talk to the output layer and say “Hey! You
are not producing the desired output, better take
responsibility”.

@ The output layer says “Well, I take responsibility
for my part but please understand that I am only
as the good as the hidden layer and weights below
me”. After all ...

fx) =9=0Wrhr_1 +br)
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@ So, we talk to Wi, by, and hy and ask them “What is —
wrong with you?”
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@ So, we talk to Wi, by, and hy and ask them “What is —

wrong with you?”

@ Wy, and by, take full responsibility but hz says “Well,
please understand that I am only as good as the pre-
activation layer”
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@ So, we talk to Wi, by, and hy and ask them “What is
wrong with you?”

@ Wy, and by, take full responsibility but hz says “Well,
please understand that I am only as good as the pre-
activation layer”

@ The pre-activation layer in turn says that I am only as
good as the hidden layer and weights below me.

as
By 8 s
A A A
as
Wa bo

ay
Wl b1

I i) Tn




So, we talk to Wpr,br, and hy and ask them “What is
wrong with you?”

Wi, and by, take full responsibility but hy says “Well,
please understand that I am only as good as the pre-
activation layer”

The pre-activation layer in turn says that I am only as
good as the hidden layer and weights below me.

We continue in this manner and realize that the
responsibility lies with all the weights and biases (i.e.
all the parameters of the model)

as
hol 2 b3
a a a
a2
1% b
" 2
A A A
ay
Wl b1

I Z2 In




So, we talk to Wpr,br, and hy and ask them “What is
wrong with you?”

Wi, and by, take full responsibility but hy says “Well,
please understand that I am only as good as the pre-
activation layer”

The pre-activation layer in turn says that I am only as
good as the hidden layer and weights below me.

We continue in this manner and realize that the
responsibility lies with all the weights and biases (i.e.
all the parameters of the model)

But instead of talking to them directly, it is easier to
talk to them through the hidden layers and output
layers (and this is exactly what the chain rule allows
us to do)

Z2
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@ So, we talk to Wi, by, and hy and ask them “What is _

wrong with you?”
@ Wi, and by, take full responsibility but Ay, says “Well,

please understand that I am only as good as the pre-
activation layer”

@ The pre-activation layer in turn says that I am only as as
good as the hidden layer and weights below me. W3 b

@ We continue in this manner and realize that the
responsibility lies with all the weights and biases (i.e.
all the parameters of the model) a9

@ But instead of talking to them directly, it is easier to Wy ba
talk to them through the hidden layers and output o o o
layers (and this is exactly what the chain rule allows 7 - -]
us to do) ay

0L(0) _ 0£(0) 9 Daydhy  day Dby Oay
8W111 - 8;} 8a3 ahz 8a2 ahl 8@1 6W111
N—_—— N—_—— N — N —

—_——

Talk to the Talk to the Talk to the Talk to the and now

weight directly output layer previous hidden previous talk to
layer hidden layer the

weights

Wl b1

I Z2 In
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0£(0) _0L(0) 99 daydhy  dax O day

8W111 8y 8@3 (‘9h2 8@2 8h1 8@1 anll
——— —_——— —— ——— ——
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights
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Quantities of interest (roadmap for the remaining part):

0£(0) _0L(0) 99 daydhy  dax O day

8W111 8y 8@3 8h2 8@2 8h1 8@1 anll
——— —_——— —— ——— ——
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights
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Quantities of interest (roadmap for the remaining part):

o Gradient w.r.t. output units

0£(0) _0L(0) 09 daydhy  dax O day

8W111 8y 8@3 8h2 8@2 8h1 8@1 anll
——— —_——— —— —— ——
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights
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Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units

o Gradient w.r.t. hidden units

0.2(0)  02(9) 09 dazdhy  daz Oy day

8W111 8y 8@3 8h2 8@2 8h1 8@1 anll
——— —_——— —— —— ——
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights
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Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights and biases

0.2(0)  02(9) 99 dazdhy  daz Oy day

8W111 8y 8@3 8h2 8@2 8h1 8@1 anll
——— —_——— —— ——— ——
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights
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Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights and biases

0.2(0)  02(9) 99 dazdhy  daz Oy day

8W111 8y 8@3 8h2 8@2 8h1 8@1 anll
——— —_——— —— ——— ——
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights

o Our focus is on Cross entropy loss and Softmax output.
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Module 4.5: Backpropagation: Computing Gradients
w.r.t. the Output Units
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Quantities of interest (roadmap for the remaining part):

o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights

0.2(0)  0.2(0) 0 dazdhy  daz Oy day

8W111 ay 8a3 8h2 8@2 8h1 8a1 3W111
—————— — ' —— N —
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer the
weights

@ Our focus is on Cross entropy loss and Softmax output.
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Let us first consider the partial derivative

w.r.t. i-th output

a
g
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Let us first consider the partial derivative —
w.r.t. i-th output

Z(0) = —logye (¢ = true class label)
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Let us first consider the partial derivative —
w.r.t. i-th output

Z(0) = —logye (¢ = true class label)
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Let us first consider the partial derivative —
w.r.t. i-th output

Z(0) = —logye (¢ = true class label)

(Z(9)) (—log )

e
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Let us first consider the partial derivative —
w.r.t. i-th output

Z(0) = —logye (¢ = true class label)

0 .
L iy
Ye
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Let us first consider the partial derivative —
w.r.t. i-th output

Z(0) = —logye (¢ = true class label)

0
Z(0)) = —log g
agi( (9)) ayi( og J¢)
= — Al ifi=14
Ye
= 0 otherwise
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Let us first consider the partial derivative —
w.r.t. i-th output

Z(0) = —logye (¢ = true class label)

0
Z(0)) = —log g
agi( (9)) ayi( og J¢)
= — Al ifi=14
Ye
= 0 otherwise

More compactly,
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Let us first consider the partial derivative —
w.r.t. i-th output

Z(0) = —logye (¢ = true class label)

0
Z(0)) = —logy
agi( (0)) ayi( og Je)
= — Al ifi=1¢
Ye
= 0 otherwise
More compactly,
0 Lii=e)
_(2(0)) = ——=2
8yi( (0)) 7
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We can now talk about the gradient

w.r.t. the vector g
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

Ve2(0) =
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

0.2(6)
O 1
VyZ(0) = : =—-=
0.2(6) Ye
OYx
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

0.2(6)
O 1
VyZ(0) = : =—-=
0.2(6) Ye
OYx
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

0Z(9) Tp—1
O 1
VyZ(0) = : =—-=
0.2(6) Ye
OYx
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

8=-§(9) Tp—1
Y1
1 | 1=
e N e
0.2(6) Ye
Oy,
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

8=§(9) Tp—1
Y1
1 | 1=
Vet®) =] i | =—|
0.2(6) Ye
OYx
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

8“;(9) To=1

Y1
1 | 1=
vez() =| i | =—= |
Ok To—
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

8";(9) Tp—1
Y1
1 | Le=2
VeZ(0) = =—= .
Ok To—
1
= <€
Ye
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0 Lie=s)
— (Z(0)) = ——
8%( (0)) »

We can now talk about the gradient
w.r.t. the vector g

8=§(9) To=1

Y1
1 | Le=2
Vo) = | i | ="
Ok To—

1

= —<€

Ye

where e(¢) is a k-dimensional vector
whose /-th element is 1 and all other
elements are 0.
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What we are actually interested in is —

02(0) _ 9(—logg)

8(1/[,1' a 80,“
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What we are actually interested in is —

02(0) _ 9(—logg)

8@ Li - 80, Li
_ O(=1logge) 99
0y,  Oar;
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What we are actually interested in is —

02(0) _ 9(—logg)

8@ Li - 80, Li
_ O(=1logge) 99
0y,  Oar;

Does 9y depend on ar; ?
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What we are actually interested in is —

02(0) _ 9(—logg)

8@ Li - 80, Li
_ O(=log ge) O
0y,  Oar;

Does 1y depend on ar; ? Indeed, it does.
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What we are actually interested in is —

02(0) _ 9(—logg)

8@ Li - 80, Li
_ O(=log ge) O
0y,  Oar;

Does 1y depend on ar; ? Indeed, it does.

exp(are)

> iexplar;)
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What we are actually interested in is —

02(0) _ 9(—logg)

8@ Li - 80, Li
_ O(=log ge) O
0y,  Oar;

Does 1y depend on ar; ? Indeed, it does.

exp(are)

> iexplar;)

Having established this, we will now

derive the full expression on the next
slide
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—logye =

Lecture 4
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N

—log gy = — Ye
dar; J¢ Oar;

softmaz(ar)e

J¢ Oar;

57015 (Deep Learning): Lecture 4
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o oo 10
aaLl sy = g[ 8a'Ll
1

= _:t)g 808:L‘ softmax(ar)e

_ -1 0 exp(ar)e
Ue Oar; Y, exp(ar)e
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So far we have derived the partial derivative w.r.t. —
the i-th element of ay,

0.2(6)
Oar;

= —(Lp=i — Us)

We can now write the gradient w.r.t. the vector arp,
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So far we have derived the partial derivative w.r.t. —
the i-th element of ay,
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Oar;
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We can now write the gradient w.r.t. the vector arp,
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So far we have derived the partial derivative w.r.t. —
the i-th element of ay,
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We can now write the gradient w.r.t. the vector arp,
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Module 4.6: Backpropagation: Computing Gradients
w.r.t. Hidden Units

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights and biases

83(9) 83( ) 8y 8a3 8h2 8az C)hl 8@1

8W111 8y 8(13 8h2 6&2 8h1 8@1 anll
—— — e N —
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous  talk to
layer hidden layer the
weights

@ Our focus is on Cross entropy loss and Softmax output.
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Chain rule along multiple paths: If a —
function p(z) can be written as a function of

intermediate results ¢;(z) then we have :
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op(z) op(z) Ogm(z)
0z _;(Mm(z) 0z
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function p(z) can be written as a function of
intermediate results ¢;(z) then we have :

op(z) op(z) Ogm(z)
0z _;&Jm(z) 0z

In our case:
@ p(z) is the loss function .Z(0)
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@ p(z) is the loss function .Z(0)

° 2= hyj

Mitesh M. Khapra

CS7015 (Deep Learning): Lecture 4




Chain rule along multiple paths: If a
function p(z) can be written as a function of
intermediate results ¢;(z) then we have :

op(z) op(z) Ogm(z)
0z _;&Jm(z) 0z

In our case:
@ p(z) is the loss function .Z(0)
° 2= hyj

° Qm(z) = QLm
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We have,%@ = (Wi+1,.,j)Tvai+1$(9)
ij

We can now write the gradient w.r.t. h;

Vi, Z(0)
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We have,%@ = (Wi+1,.,j)Tin+1$(9)
ij

We can now write the gradient w.r.t. h;
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aéiw) (Wi, 2) "V,
Vh20)=| 7" | = :
8522'(0) (VVZ'—H, . ,n)TvaHr’g(G)
= (Wi+1)T(vai+1$(0))

o We are almost done except that we do not
know how to calculate V,, .2 (0) fori < L—1

ai+1

o We will see how to compute that
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Module 4.7: Backpropagation: Computing Gradients
w.r.t. Parameters
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Quantities of interest (roadmap for the remaining part):
o Gradient w.r.t. output units
o Gradient w.r.t. hidden units

o Gradient w.r.t. weights and biases
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~—— —_——  —— ——
Talk to the Talk to the Talk to the  Talk to the and now
weight directly output layer previous hidden previous talk to
layer hidden layer  the
weights

@ Our focus is on Cross entropy loss and Softmax output.
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Finally, coming to the biases —

ari = bpi + Y Whijhi—1,;
J
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Finally, coming to the biases —
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Finally, coming to the biases —

ag; = bg; + Z Whijhi—1,5
J
02(0)  0.2(6) da;
by, Oay; Oby;
_02(0)
~ Oay

We can now write the gradient w.r.t. the vector
b
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Finally, coming to the biases —
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Finally, coming to the biases —

ag; = bg; + Z Whijhi—1,5
J
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We can now write the gradient w.r.t. the vector
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Module 4.8: Backpropagation: Pseudo code
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Finally, we have all the pieces of the puzzle
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Finally, we have all the pieces of the puzzle

Va.-Z(0) (gradient w.r.t. output layer)
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Finally, we have all the pieces of the puzzle

Va.-Z(0) (gradient w.r.t. output layer)

Vi -Z(0),Va, Z(0) (gradient w.r.t. hidden layers, 1 <k < L)
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Finally, we have all the pieces of the puzzle

Va.-Z(0) (gradient w.r.t. output layer)
Vi -Z(0),Va, Z(0) (gradient w.r.t. hidden layers, 1 <k < L)

Vw,Z(0), Vb, Z(0) (gradient w.r.t. weights and biases, 1 < k < L)
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Finally, we have all the pieces of the puzzle

Va.-Z(0) (gradient w.r.t. output layer)
Vi -Z(0),Va, Z(0) (gradient w.r.t. hidden layers, 1 <k < L)

Vw,Z(0), Vb, Z(0) (gradient w.r.t. weights and biases, 1 < k < L)

We can now write the full learning algorithm
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Algorithm: gradient_descent()

t <« 0;
max_iterations < 1000;
Initialize 6y = WP, .., W2, 80, ..., b%];
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Algorithm: gradient_descent()

t <« 0;

max_iterations < 1000;

Initialize 6y = WP, .., W2, 80, ..., b%];
while t++ < max_iterations do

end
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Algorithm: gradient_descent()

t < 0;

max_iterations < 1000;

Initialize 6y = WP, .., W2, 80, ..., b%];

while t++ < max_iterations do
hi,ha,....hp—1,a1,0a2,....,ar,§ = forward_propagation(6;);

end
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Algorithm: gradient_descent()

t < 0;
max_iterations < 1000;
Initialize 6y = WP, .., W2, 80, ..., b%];
while t++ < mazx_iterations do
hi,ha,....hp—1,a1,0a2,....,ar,§ = forward_propagation(6;);
Vo, = backward_propagation(hy, ha,...,hp—1,a1,a2,...,aL5,Y,J);

end
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Algorithm: gradient_descent()

t < 0;

max_iterations < 1000;

Initialize 6y = WP, .., W2, 80, ..., b%];

while t++ < mazx_iterations do
hi,ha,....hp—1,a1,0a2,....,ar,§ = forward_propagation(6;);
Vo, = backward_propagation(hy, ha,...,hp—1,a1,a2,...,aL5,Y,J);
Or41 < 0 — Vi,

end
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Algorithm: forward_propagation(6)
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Algorithm: forward_propagation(6)
for k=1to L—1do

end
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Algorithm: forward_propagation(6)

fork=1to L—-1do
ar = by, + Wihp_1;

end
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Algorithm: forward_propagation(6)
fork=1to L —1do

ar = by + Wihg—1;

hi, = g(a);
end
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Algorithm: forward_propagation(6)
fork=1to L —1do
ap = bg + Wihg_1;
hy, = g(ax);
end
ap, =br +Wrhp—1;
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Algorithm: forward_propagation(6)

for k=1to L —1do
ar = by, + Wihp_1;
hi, = g(ax);

end

ap =br +Wrhp1;

9= 0O(ar);

Mitesh M. Khapra
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;
Va, Z(0) = —(e(y) — 9) ;
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;
Va, Z(0) = —(e(y) — 9) ;
for k=1L to1ldo

end
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;

Vo, Z(0) = —(e(y) = §) ;

for k=1L to1ldo

/ / Compute gradients w.r.t. parameters ;

end
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;

Va, Z(0) = —(e(y) —9) ;

for k=1L to1ldo

/ / Compute gradients w.r.t. parameters ;
Vw,Z(0) = Vakf(é?)hgfl ;

end
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;

Va, L(0) = —(e(y) — ) ;

for k=1L to1ldo

/ / Compute gradients w.r.t. parameters ;
Vw,Z(0) = Vakf(é?)hgfl ;

kaf(e) = vakg(e) ;

end
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;

Va, Z(0) = —(e(y) — 9) ;

for k=1L to1ldo

/ / Compute gradients w.r.t. parameters ;
Vw,Z(0) = Vakf(ﬁ)hill ;

kaf(e) = vakg(e) ;

// Compute gradients w.r.t. layer below ;

end
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;

Va, Z(0) = —(e(y) — 9) ;

for k=1L to1ldo

/ / Compute gradients w.r.t. parameters ;
Vw,ZL(0) = Vo, LO)hL | ;

kaf(e) = vakg(e) ;

// Compute gradients w.r.t. layer below ;
vhk—lg(a) = Wg(vakg(e)) ;

end
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;

Va, Z(0) = —(e(y) —9) ;

for k=1L to1do

/ / Compute gradients w.r.t. parameters ;

Vw,Z(0) = Vakf(ﬁ)hill ;

Vi, Z(0) =V, Z(0) ;

// Compute gradients w.r.t. layer below ;

Vi 1 Z(0) = Wg(vakg(e)) ;

// Compute gradients w.r.t. layer below (pre-activation);

end
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Just do a forward propagation and compute all h;’s, a;’s, and g

Algorithm: back_propagation(hy, he, ..., hr—1,a1,a2,...,ar5,9,9)

//Compute output gradient ;

Va, Z(0) = —(e(y) — 1) ;

for k=L to1do

/ / Compute gradients w.r.t. parameters ;
Vw,Z(0) = Vakf(H)hill ;

kaf(e) = vakg(e) ;

// Compute gradients w.r.t. layer below ;
vhk—lg(a) = Wg(vakg(e)) ;

// Compute gradients w.r.t. layer below (pre-activation);
Va . ZL0) =V,  Z0)O]....,¢ (ak-14),---];
end
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Module 4.9: Derivative of the activation function
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Now, the only thing we need to figure out is how to compute ¢’
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function

9(z) = o(2)
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function

9(z) = o(2)
_ 1
Cl4e
’ 1 d -z
72) = (D) (e
1 —z
= (_1) (1_‘_67,2) (_6 )
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function

9(z) = o(2)
_ 1
Cl4e
’ 1 d -z
72) = (D) (e
1 —z
= (_1) (1 + 67‘2)2 (_6 )
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function tanh
9(z) = o(2) g(z) =tanh (z)
_ 1 _€Z — e %
1+e % _ez+€—z
/ 1 d —z
=(— —(1
7= (Ve e
1
— _1 _ 7
(D )
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function tanh

9(z) = o(2) g(z) =tanh (z)
_ 1 e — e %
Cl4e? Tete

- (@ e e o)

7 = (1) L) (<ez+e—z>jz<ez—e—z> )

(ez + efz)Q
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function tanh

9(z) = o(2) g(z) =tanh (z)
_ 1 e — e %
Cl4e? Tete

- (@ e e o)

7 = (1) L) (<ez+e—z>jz<ez—e—z> )

= (D) 9(e) = CGER=E
1 1—|—6_Z—1 :(ez+€—z)2_(ez_e—z)2
= 1 + e % < 1 + e—* > (GZ + C_Z)2
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function tanh

9(z) = o(2) g(z) =tanh (z)
_ 1 e — e %
Cl4e? Tete

Jd(z)= (-1 _t d (I14+e77) ((ez +e?)k(e” —e7) )

- (@ e e o)

1 1—|—6_Z—1 :(ez+€—z)2_(ez_e—z)2
T lte ( 14+e? > ( (ez+e);z)2
=9(2)(1—9g(2)) “l- G
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Now, the only thing we need to figure out is how to compute ¢’

Logistic function

9(z) = o(2)
_ 1
Cl4e
, 1 d
g (Z) = (_ )(1 _f_e,z)Q%
1 —z
= (_1) (1 + 67‘2)2 (_

Mitesh M.
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g(z) =tanh (2)
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