
1/5

Module 4.1: Feedforward Neural Networks (a.k.a.
multilayered network of neurons)
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The input to the network is an n-dimensional
vector

The network contains L− 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts :

pre-activation and
activation (ai and hi are vectors)

The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer

Wi ∈ Rn×n and bi ∈ Rn are the weight and bias
between layers i− 1 and i (0 < i < L)

WL ∈ Rn×k and bL ∈ Rk are the weight and bias
between the last hidden layer and the output layer
(L = 3 in this case)
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hL = ŷ = f(x) The pre-activation at layer i is given by

ai(x) = bi +Wihi−1(x)

The activation at layer i is given by

hi(x) = g(ai(x))

where g is called the activation function (for
example, logistic, tanh, linear, etc.)

The activation at the output layer is given by

f(x) = hL(x) = O(aL(x))

where O is the output activation function (for
example, softmax, linear, etc.)

To simplify notation we will refer to ai(x) as ai
and hi(x) as hi
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hL = ŷ = f(x) The pre-activation at layer i is given by

ai = bi +Wihi−1

The activation at layer i is given by

hi = g(ai)

where g is called the activation function (for
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hL = ŷ = f(x)
Data: {xi, yi}Ni=1

Model:

ŷi = f(xi) = O(W3g(W2g(W1x+ b1) + b2) + b3)

Parameters:
θ =W1, ..,WL, b1, b2, ..., bL(L = 3)

Algorithm: Gradient Descent with Back-
propagation (we will see soon)

Objective/Loss/Error function: Say,

min
1

N

N∑
i=1

k∑
j=1

(ŷij − yij)2

In general, min L (θ)

where L (θ) is some function of the parameters
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