Module 4.1: Feedforward Neural Networks (a.k.a.
multilayered network of neurons)
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The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

o The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer
W; € R™™ and b; € R™ are the weight and bias
between layers ¢ — 1 and ¢ (0 < i < L)

Wi, € R™* and by, € R* are the weight and bias
between the last hidden layer and the output layer
(L = 3 in this case)
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o The pre-activation at layer ¢ is given by
a;j(x) = b; + Wihi—1(x)
o The activation at layer 7 is given by

hi(z) = g(ai(x))
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The pre-activation at layer ¢ is given by
a;j(x) = b; + Wihi—1(x)
The activation at layer ¢ is given by

hi(z) = g(ai(x))

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

The activation at the output layer is given by
f(x) = hr(z) = O(ar(z))

where O is the output activation function (for
example, softmax, linear, etc.)

To simplify notation we will refer to a;(x) as a;
and h;(z) as h;




o The pre-activation at layer ¢ is given by
a; = b; + Wih;—
o The activation at layer 7 is given by
hi = g(ai)

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

o The activation at the output layer is given by

f(z) =hy = O(ar)

where O is the output activation function (for
example, softmax, linear, etc.)
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e Model:

Ui = f(xz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:
0= Wl, . WL, bl, bg, ceey bL(L = 3)
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e Model:

Ui = f(xz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:

0= Wl, . WL, bl, bg, ceey bL(L = 3)
5 @ Algorithm:  Gradient Descent with Back-
propagation (we will see soon)

e Objective/Loss/Error function: Say,

| Nk
min ZZ(Q@' — ij)?

i=1 j=1

In general, min £ (0)

where Z(0) is some function of the parameters




