Module 4.1: Feedforward Neural Networks (a.k.a.
multilayered network of neurons)

@ The input to the network is an n-dimensional
vector

x1

Z2

Tn

@ The input to the network is an n-dimensional
vector

x1

Z2

Tn

@ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

@ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

x1 Z2 In

@ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

o Finally, there is one output layer containing k

O Q Q neurons (say, corresponding to k classes)

x1 Z2 In

@ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

o Finally, there is one output layer containing k

O Q Q neurons (say, corresponding to k classes)

x1 Z2 In

I

T2

Tn

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts :

® & &
® & &

I

T2

Tn

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts :

o o @
e o @

I

as

T2

Tn

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation

(@) @ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

as
b o Finally, there is one output layer containing k
2 neurons (say, corresponding to k classes)
Q Q Q e Each neuron in the hidden layer and output layer
az can be split into two parts : pre-activation and
hi
ai

activation

x1 Z2 In

(@) @ The input to the network is an n-dimensional
vector

e The network contains L — 1 hidden layers (2, in
this case) having n neurons each

as
b o Finally, there is one output layer containing k
2 neurons (say, corresponding to k classes)
Q Q Q e Each neuron in the hidden layer and output layer
az can be split into two parts : pre-activation and
hi
ai

activation (a; and h; are vectors)

x1 Z2 In

x1

Z2

Tn

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer

Z2

Tn

1

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer

W; € R™" and b; € R™ are the weight and bias
between layers ¢ — 1 and ¢ (0 < i < L)

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

o The input layer can be called the 0-th layer and

the output layer can be called the (L)-th layer

W; € R™™ and b; € R™ are the weight and bias
between layers ¢ — 1 and ¢ (0 < i < L)

The input to the network is an n-dimensional
vector

The network contains L — 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (a; and h; are vectors)

o The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer
W; € R™™ and b; € R™ are the weight and bias
between layers ¢ — 1 and ¢ (0 < i < L)

Wi, € R™* and by, € R* are the weight and bias
between the last hidden layer and the output layer
(L = 3 in this case)

)

x

(

by + Wih;—1

ai(z)

>
Q
a
[}
=
[=10)
R
S
g
g
+
<
=i
S
E
Z
+
Q
s
o}
—
(o
5}
=
T
(]

o The pre-activation at layer ¢ is given by
a;j(x) = b; + Wihi—1(x)
o The activation at layer 7 is given by

hi(z) = g(ai(x))

o The pre-activation at layer ¢ is given by
a;j(x) = b; + Wihi—1(x)
o The activation at layer 7 is given by
hi(z) = g(ai(z))

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

o The pre-activation at layer ¢ is given by
a;j(x) = b; + Wihi—1(x)
o The activation at layer 7 is given by
hi(z) = g(ai(z))

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

o The activation at the output layer is given by

f(@) = hy(z) = O(ar(z))

o The pre-activation at layer ¢ is given by
a;j(x) = b; + Wihi—1(x)
o The activation at layer 7 is given by
hi(z) = g(ai(z))

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

o The activation at the output layer is given by

f(@) = hy(z) = O(ar(z))

where O is the output activation function (for
example, softmax, linear, etc.)

The pre-activation at layer ¢ is given by
a;j(x) = b; + Wihi—1(x)
The activation at layer ¢ is given by

hi(z) = g(ai(x))

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

The activation at the output layer is given by
f(x) = hr(z) = O(ar(z))

where O is the output activation function (for
example, softmax, linear, etc.)

To simplify notation we will refer to a;(x) as a;
and h;(z) as h;

o The pre-activation at layer ¢ is given by
a; = b; + Wih;—
o The activation at layer 7 is given by
hi = g(ai)

where ¢ is called the activation function (for
example, logistic, tanh, linear, etc.)

o The activation at the output layer is given by

f(z) =hy = O(ar)

where O is the output activation function (for
example, softmax, linear, etc.)

1

N

e Data: {z;,y;};

1

N

e Data: {z;,y;};
e Model:

1

=

-~
=
S

—
..mm
©

A
o

o Model:

)

+ b3

Wl.CC + bl) + bg)

(

(W3g(Wag

=0

Ui = f(x;)

e Data: {xiayi}i]\il
e Model:

Ui = f(xz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:
0= Wl, . WL, bl, bg, ceey bL(L = 3)

e Data: {miayi}i]\il
e Model:

Ui = f(xz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:
0= Wl, . WL, bl, bg, ceey bL(L = 3)
by o Algorithm: Gradient Descent with Back-

e Data: {-fz'ayi}i]\;l
e Model:

Ui = f(xz) = O(ng(ng(Wlx + bl) + bg) + bg)

o Parameters:

0= Wl, . WL, bl, bg, ceey bL(L = 3)
5 @ Algorithm: Gradient Descent with Back-
propagation (we will see soon)

e Objective/Loss/Error function: Say,

| Nk
min ZZ(Q@' — ij)?

i=1 j=1

In general, min £ (0)

where Z(0) is some function of the parameters

