Module 4.2: Learning Parameters of Feedforward
Neural Networks (Intuition)



The story so far...
@ We have introduced feedforward neural networks

@ We are now interested in finding an algorithm for learning the parameters of
this model




@ Recall our gradient descent algorithm




hy =y = f(z) @ Recall our gradient descent algorithm

Algorithm: gradient_descent()

t <+ 0;
max_iterations <— 1000;
Initialize wq, by;
while t++ < maz_iterations do
Wiy < wy — NVwy;
b1 < by — nVby;
end
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@ Recall our gradient descent algorithm

@ We can write it more concisely as

Algorithm: gradient_descent()

t <+ 0;
max_iterations <— 1000;
Initialize 0y = [W{, .., W09, .. b0
while t++ < maz_iterations do
| 01 < 6 — V0

end
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e where V6, = [awl,t 1 AWy Dby 07 abL,t]
o Now, in this feedforward neural network,
instead of 6 = [w,b] we have 0 =

(W1, Wa, .., WL, b1, b, .., by
o We can still use the same algorithm for
learning the parameters of our model
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o V@ is thus composed of
VWi, VWs, .. VW_4 € Rnxn’ VWi, € RnXk,
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Vbi, Vb, ...,.Vbr_1 € R” and Vb, € RF
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We need to answer two questions
e How to choose the loss function .#(6)?

e How to compute V@ which is composed of
VWi, VWa, ..., VWi_1 € R™" VW € R*¥k
Vbl, ng, ...,VbL_l € R™ and Vb, € Rk ?




