Module 5.1: Learning Parameters : Infeasible (Guess
Work)
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x m y= f(x
/\J ) Input for training

1 {xi,yi}if\il — N pairs of (z,y)

flx) = m Training objective
Find w and b such th]%t:
minimize £ (w,b) = > (v = f(2:))?

p=Ill
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x m y = f(x)
/)\_J What does it mean to train the network?
@ Suppose we train the network with

(x,y) = (0.5,0.2) and (2.5,0.9)
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x m y=f(x
/)\_J (@) What does it mean to train the network?
@ Suppose we train the network with
(x,y) = (0.5,0.2) and (2.5,0.9)

f(z) = m o At the end of training we expect to
find w*, b* such that:
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x m y=f(x
/)\_J (@) What does it mean to train the network?
@ Suppose we train the network with
(x,y) = (0.5,0.2) and (2.5,0.9)

f(z) = m o At the end of training we expect to
find w*, b* such that:

o f(0.5) = 0.2 and f(2.5) — 0.9

§2.5,0.9)

0.2 $40.5,0.2)

-6 -4 -2 0 2 4 6
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x m y=f(z
/\J (@) What does it mean to train the network?
@ Suppose we train the network with
(x,y) = (0.5,0.2) and (2.5,0.9)

f(z) = m o At the end of training we expect to
find w*, b* such that:

e f(0.5) = 0.2 and f(2.5) — 0.9

§2.5,0.9)

0 In other words...

05 e We hope to find a sigmoid function
such that (0.5,0.2) and (2.5,0.9) lie
on this sigmoid

0.2 $40.5,0.2) )
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Mitesh M. Khapra

What does it mean to train the network?
@ Suppose we train the network with
(x,y) = (0.5,0.2) and (2.5,0.9)
@ At the end of training we expect to
find w*, b* such that:

e f(0.5) = 0.2 and f(2.5) — 0.9

In other words...

e We hope to find a sigmoid function
such that (0.5,0.2) and (2.5,0.9) lie
on this sigmoid
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Let us see this in more detail....
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e Can we try to find such a w*, b* manually

42.5,0.9)
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e Can we try to find such a w*, b* manually

10 e Let us try a random guess.. (say, w = 0.5,b =0)
25,08
0.8 ‘ '
mos
04
02 40.5,0.2)
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e Can we try to find such a w*, b* manually

10 e Let us try a random guess.. (say, w = 0.5,b =0)
42.5,0.9)

0s @ Clearly not good, but how bad is it ?

0.2 §0.5,0.2)

— w=0.50, b=0.00
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e Can we try to find such a w*, b* manually
10 e Let us try a random guess.. (say, w = 0.5,b =0)
0s P @ Clearly not good, but how bad is it ?
~os e Let us revisit .Z(w,b) to see how bad it is ...
02 403,02
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o8 2 i=1
> 0.6
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— w=0.50, b=0.00
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0.2
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Mitesh M. Khapra

# (g1 = f(21)” + (y2 = f(22))?)

(0.9 — £(2.5))% + (0.2 — £(0.5))%)
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40.5,0.2)

42.5,0.9)

1 N
Lw,b) =5y (yi — f(@))?
=1
= (0 F@0) 4 (e — F@2))
_ % F((0.9— F(25)2+ (0.2 — £(0.5))?)
= 0.073

— w=0.50, b=0.00
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10 1 N
' $25.09) Z(w, b) = 5 * Z(yz - f(l'l))Q
08 =1
= 2 # (o~ J@) + (12— (@)
= 5+ (09— F25)7 + (0.2~ f(0.5))
e — 0.073

We want .2 (w, b) to be as close to 0 as possible
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42.5,0.9)

40.5,0.2)

— w=0.50, b=0.00

Let us try some other values of w, b

sh M. Khapra

w b ZL(w,b)

0.50 0.00 0.0730
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Let us try some other values of w, b

L 500 w b Z(w,b)
o8 0.50 0.00 0.0730
o8 -0.10 0.00 0.1481

40.5,0.2)
— w=0.50, b=0.00

— w=-0.10, b=0.00

Oops!! this made things even worse...
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Let us try some other values of w, b

w0 . w b ZL(w,b)
0.50 0.00 0.0730

-0.10 0.00  0.1481
0.94 -0.94 0.0214

02} — w=0.50, b=0.00 40.5,0.2)
— w=-0.10, b=0.00
— w=0.94, b=-0.95

Perhaps it would help to push w and b in the
other direction...
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Let us try some other values of w, b

w b Z(w,b)
0.50 0.00 0.0730
-0.10 0.00  0.1481
094 -0.94 0.0214
1.42 -1.73 0.0028

w=0.50, b=0.00
w=-0.10, b=0.00 40.5,0.2)
w=0.94, b=-0.95
w=1.43, b=-1.74

Let us keep going in this direction, i.e., increase
w and decrease b
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Let us try some other values of w, b

10 oiae w b z(wa b)
0 % 0.50 0.00 0.0730
-0.10 0.00  0.1481

— 0.94 -0.94 0.0214
142 -1.73  0.0028

w=0.50, b=0.00
w=-0.10, b=0.00

. W=0.94, b=-0.95 40.5,0.2)
= werasbm17a 1.65 -2.08 0.0003
w=1.65, b=-2.08
0.0
-6 -4 -2 0 2 4 6

Let us keep going in this direction, i.e., increase
w and decrease b
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Let us try some other values of w, b

L w b Z(w,b)
0.50 0.00 0.0730
-0.10  0.00 0.1481
== 0.94 -0.94 0.0214
B vrstarye 1.42  -1.73  0.0028
| I 1.65 -2.08 0.0003
o———”. 178 -2.27  0.0000

With some guess work and intuition we were able
to find the right values for w and b
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Let us look at something better than our “gquess work”
algorithm....
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@ Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where Z(w,b) is
minimum
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@ Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where Z(w,b) is
minimum

Random search on error surface

error

. . . L . L L .
0.08 016 024 032 040 048 056 0.64
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@ Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where Z(w,b) is
minimum

Random search on error surface

error

@ But of course this becomes intract-
able once you have many more data
points and many more parameters !!

. . . L . L L .
0.08 016 024 032 040 048 056 0.64
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@ Since we have only 2 points and 2
parameters (w, b) we can easily plot
Z(w,b) for different values of (w, b)
and pick the one where Z(w,b) is
minimum

Random search on error surface

But of course this becomes intract-
able once you have many more data
points and many more parameters !!

error
(]

o Further, even here we have plotted
the error surface only for a small
range of (w, b) [from (—6,6) and not
from (— inf,inf)]

. . . L . L L .
0.08 016 024 032 040 048 056 0.64
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Let us look at the geometric interpretation of our
“guess work” algorithm in terms of this error surface
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T T T T T Random search on error surface
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T T T T T Random search on error surface
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T T T T T Random search on error surface
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T T T T T Random search on error surface
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