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Module 5.1: Learning Parameters : Infeasible (Guess
Work)
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σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)
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σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

Input for training

{xi, yi}Ni=1 → N pairs of (x, y)

Training objective

Find w and b such that:

minimize
w,b

L (w, b) =

N∑
i=1

(yi − f(xi))
2
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σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

What does it mean to train the network?

Suppose we train the network with
(x, y) = (0.5, 0.2) and (2.5, 0.9)

At the end of training we expect to
find w∗, b∗ such that:

f(0.5)→ 0.2 and f(2.5)→ 0.9

In other words...

We hope to find a sigmoid function
such that (0.5, 0.2) and (2.5, 0.9) lie
on this sigmoid
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Let us see this in more detail....
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Can we try to find such a w∗, b∗ manually

Let us try a random guess.. (say, w = 0.5, b = 0)

Clearly not good, but how bad is it ?

Let us revisit L (w, b) to see how bad it is ...
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L (w, b) =
1

2
∗

N∑
i=1

(yi − f(xi))
2

=
1

2
∗ ((y1 − f(x1))

2 + (y2 − f(x2))
2)

=
1

2
∗ ((0.9− f(2.5))2 + (0.2− f(0.5))2)

= 0.073

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5



4/8

L (w, b) =
1

2
∗

N∑
i=1

(yi − f(xi))
2

=
1

2
∗ ((y1 − f(x1))

2 + (y2 − f(x2))
2)

=
1

2
∗ ((0.9− f(2.5))2 + (0.2− f(0.5))2)

= 0.073

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5



4/8

L (w, b) =
1

2
∗

N∑
i=1

(yi − f(xi))
2

=
1

2
∗ ((y1 − f(x1))

2 + (y2 − f(x2))
2)

=
1

2
∗ ((0.9− f(2.5))2 + (0.2− f(0.5))2)

= 0.073

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5



4/8

L (w, b) =
1

2
∗

N∑
i=1

(yi − f(xi))
2

=
1

2
∗ ((y1 − f(x1))

2 + (y2 − f(x2))
2)

=
1

2
∗ ((0.9− f(2.5))2 + (0.2− f(0.5))2)

= 0.073

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5



4/8

L (w, b) =
1

2
∗

N∑
i=1

(yi − f(xi))
2

=
1

2
∗ ((y1 − f(x1))

2 + (y2 − f(x2))
2)

=
1

2
∗ ((0.9− f(2.5))2 + (0.2− f(0.5))2)

= 0.073

We want L (w, b) to be as close to 0 as possible
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Let us try some other values of w, b

w b L (w, b)

0.50 0.00 0.0730

-0.10 0.00 0.1481
0.94 -0.94 0.0214
1.42 -1.73 0.0028
1.65 -2.08 0.0003
1.78 -2.27 0.0000
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Let us try some other values of w, b

w b L (w, b)

0.50 0.00 0.0730
-0.10 0.00 0.1481

0.94 -0.94 0.0214
1.42 -1.73 0.0028
1.65 -2.08 0.0003
1.78 -2.27 0.0000

Oops!! this made things even worse...
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Let us try some other values of w, b

w b L (w, b)

0.50 0.00 0.0730
-0.10 0.00 0.1481
0.94 -0.94 0.0214

1.42 -1.73 0.0028
1.65 -2.08 0.0003
1.78 -2.27 0.0000

Perhaps it would help to push w and b in the
other direction...
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Let us keep going in this direction, i.e., increase
w and decrease b
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Let us try some other values of w, b

w b L (w, b)

0.50 0.00 0.0730
-0.10 0.00 0.1481
0.94 -0.94 0.0214
1.42 -1.73 0.0028
1.65 -2.08 0.0003
1.78 -2.27 0.0000

With some guess work and intuition we were able
to find the right values for w and b
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Let us look at something better than our “guess work”
algorithm....
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Since we have only 2 points and 2
parameters (w, b) we can easily plot
L (w, b) for different values of (w, b)
and pick the one where L (w, b) is
minimum

But of course this becomes intract-
able once you have many more data
points and many more parameters !!

Further, even here we have plotted
the error surface only for a small
range of (w, b) [from (−6, 6) and not
from (− inf, inf)]
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Let us look at the geometric interpretation of our
“guess work” algorithm in terms of this error surface
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