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Module 5.2: Learning Parameters : Gradient Descent
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Now let’s see if there is a more efficient and
principled way of doing this
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Goal

Find a better way of traversing the error surface so that we can reach the
minimum value quickly without resorting to brute force search!
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θ = [w, b]

vector of parameters,
say, randomly initial-
ized
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∆θ = [∆w,∆b]

θnew = θ + η ·∆θ

vector of parameters,
say, randomly initial-
ized

change in the
values of w, b

Question:What is the right ∆θ to use?

We moved in the direc-
tion of ∆θ

Let us be a bit conservat-
ive: move only by a small
amount η

The answer comes from Taylor series
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For ease of notation, let ∆θ = u, then from Taylor series, we have,
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For ease of notation, let ∆θ = u, then from Taylor series, we have,

L (θ + ηu) = L (θ) + η ∗ uT∇L (θ) +
η2

2!
∗ uT∇2L (θ)u+

η3

3!
∗ ...+ η4

4!
∗ ...
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= L (θ) + η ∗ uT∇L (θ) [η is typically small, so η2, η3, ...→ 0]

Note that the move (ηu) would be favorable only if,

L (θ + ηu)−L (θ) < 0 [i.e., if the new loss is less than the previous loss]

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5



5/15

For ease of notation, let ∆θ = u, then from Taylor series, we have,

L (θ + ηu) = L (θ) + η ∗ uT∇L (θ) +
η2
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∗ uT∇2L (θ)u+

η3

3!
∗ ...+ η4

4!
∗ ...

= L (θ) + η ∗ uT∇L (θ) [η is typically small, so η2, η3, ...→ 0]

Note that the move (ηu) would be favorable only if,

L (θ + ηu)−L (θ) < 0 [i.e., if the new loss is less than the previous loss]

This implies,

uT∇L (θ) < 0
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Okay, so we have,

uT∇L (θ) < 0

But, what is the range of uT∇L (θ) ?
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uT∇L (θ) < 0

But, what is the range of uT∇L (θ) ? Let’s see....
Let β be the angle between uT and ∇L (θ), then we know that,

− 1 ≤ cos(β) =
uT∇L (θ)

||u|| ∗ ||∇L (θ)||
≤ 1

Multiply throughout by k = ||u|| ∗ ||∇L (θ)||

− k ≤ k ∗ cos(β) = uT∇L (θ) ≤ k

Thus, L (θ + ηu)−L (θ) = uT∇L (θ) = k ∗ cos(β) will be most negative when
cos(β) = −1 i.e., when β is 180◦
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Gradient Descent Rule

The direction u that we intend to move in should be at 180◦ w.r.t. the gradient

In other words, move in a direction opposite to the gradient
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Gradient Descent Rule

The direction u that we intend to move in should be at 180◦ w.r.t. the gradient

In other words, move in a direction opposite to the gradient

Parameter Update Equations

wt+1 = wt − η∇wt

bt+1 = bt − η∇bt

where,∇wt =
∂L (w, b)

∂w at w = wt, b = bt
,∇bt =

∂L (w, b)

∂b at w = wt, b = bt
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Gradient Descent Rule

The direction u that we intend to move in should be at 180◦ w.r.t. the gradient

In other words, move in a direction opposite to the gradient

Parameter Update Equations

wt+1 = wt − η∇wt

bt+1 = bt − η∇bt

where,∇wt =
∂L (w, b)

∂w at w = wt, b = bt
,∇bt =

∂L (w, b)

∂b at w = wt, b = bt

So we now have a more principled way of moving in the w-b plane than our “guess
work” algorithm
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Let’s create an algorithm from this rule ...

To see this algorithm in practice let us first derive ∇w and ∇b for our toy neural
network
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Let’s create an algorithm from this rule ...

Algorithm 1: gradient descent()

t← 0;
max iterations← 1000;
while t < max iterations do

wt+1 ← wt − η∇wt;
bt+1 ← bt − η∇bt;

end

To see this algorithm in practice let us first derive ∇w and ∇b for our toy neural
network
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σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

Let’s assume there is only 1 point to fit
(x, y)

L (w, b) =
1

2
∗ (f(x)− y)2

∇w =
∂L (w, b)

∂w
=

∂

∂w
[
1

2
∗ (f(x)− y)2]
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∇w =
∂

∂w
[
1

2
∗ (f(x)− y)2]

=
1

2
∗ [2 ∗ (f(x)− y) ∗ ∂

∂w
(f(x)− y)]

= (f(x)− y) ∗ ∂

∂w
(f(x))

= (f(x)− y) ∗ ∂

∂w

( 1

1 + e−(wx+b)

)
= (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x

∂

∂w

( 1

1 + e−(wx+b)

)
=

−1

(1 + e−(wx+b))2

∂

∂w
(e−(wx+b)))

=
−1

(1 + e−(wx+b))2
∗ (e−(wx+b))

∂

∂w
(−(wx+ b)))

=
−1

(1 + e−(wx+b))
∗ e−(wx+b)

(1 + e−(wx+b))
∗ (−x)

=
1

(1 + e−(wx+b))
∗ e−(wx+b)

(1 + e−(wx+b))
∗ (x)

= f(x) ∗ (1− f(x)) ∗ x
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)
=

−1

(1 + e−(wx+b))2

∂

∂w
(e−(wx+b)))

=
−1

(1 + e−(wx+b))2
∗ (e−(wx+b))

∂

∂w
(−(wx+ b)))

=
−1

(1 + e−(wx+b))
∗ e−(wx+b)

(1 + e−(wx+b))
∗ (−x)

=
1

(1 + e−(wx+b))
∗ e−(wx+b)

(1 + e−(wx+b))
∗ (x)

= f(x) ∗ (1− f(x)) ∗ x
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σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

So if there is only 1 point (x, y), we have,

∇w = (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x

For two points,

∇w =
2∑

i=1

(f(xi)− yi) ∗ f(xi) ∗ (1− f(xi)) ∗ xi

∇b =
2∑

i=1

(f(xi)− yi) ∗ f(xi) ∗ (1− f(xi))
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x

y

−1 0 1 2 3 4
0

1

2

3

4

5

6 f(x) = x2 + 1

When the curve is steep the gradient
( ∆y1

∆x1
) is large

When the curve is gentle the gradient
( ∆y2

∆x2
) is small

Recall that our weight updates are
proportional to the gradient w = w−
η∇w
Hence in the areas where the curve is
gentle the updates are small whereas
in the areas where the curve is steep
the updates are large
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Let’s see what happens when we start from a differ-
ent point
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Irrespective of where we start from
once we hit a surface which has a
gentle slope, the progress slows down
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