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Eigen Values, Eigen Vectors, Eigen Value Decomposition, Principal Component

Analysis, Singular Value Decomposition
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Module 6.1 : Eigenvalues and Eigenvectors
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x

y

x =

[
1
3

]
A =

[
1 2
2 1

]

Ax =

[
7
5

]

What happens when a matrix hits a
vector?

The vector gets transformed into a
new vector (it strays from its path)

The vector may also get scaled
(elongated or shortened) in the
process.
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[
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1 2
2 1

] For a given square matrix A, there
exist special vectors which refuse to
stray from their path.

These vectors are called eigenvectors.

More formally,

Ax = λx [direction remains the same]

The vector will only get scaled but
will not change its direction.
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So what is so special about
eigenvectors?

Why are they always in the limelight?

It turns out that several properties
of matrices can be analyzed based
on their eigenvalues (for example, see
spectral graph theory)

We will now see two cases where
eigenvalues/vectors will help us in
this course
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k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]

=

[
p 1− q

1− p q

] [
k1
k2

]

v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .
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k1 k2p

1− p

q

1− q
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k1 k2p

1− p

q

1− q

This is a problem for the two restaurant
owners.

The number of patrons is changing constantly.

Or is it? Will the system eventually reach
a steady state? (i.e. will the number
of customers in the two restaurants become
constant over time?)

Turns out they will!

Let’s see how?
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Definition

Let λ1, λ2, . . . , λn be the
eigenvectors of an n× n matrix
A. λ1 is called the dominant
eigen value of A if

|λ1| ≥ |λi| i = 2, . . . , n
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Let λ1, λ2, . . . , λn be the
eigenvectors of an n× n matrix
A. λ1 is called the dominant
eigen value of A if

|λ1| ≥ |λi| i = 2, . . . , n

Definition

A matrix M is called a stochastic matrix if all the
entries are positive and the sum of the elements in
each column is equal to 1.
(Note that the matrix in our example is a
stochastic matrix)
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is 1.
See proof here

Definition

A matrix M is called a stochastic matrix if all the
entries are positive and the sum of the elements in
each column is equal to 1.
(Note that the matrix in our example is a
stochastic matrix)

Theorem

If A is a n × n square matrix with a dominant
eigenvalue, then the sequence of vectors given by
Av0, A

2v0, . . . , A
nv0, . . . approaches a multiple of

the dominant eigenvector of A.
(the theorem is slightly misstated here for ease of
explanation)
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Let ed be the dominant eigenvector of M and
λd = 1 the corresponding dominant eigenvalue

Given the previous definitions and theorems,
what can you say about the sequence
Mv(0),M

2v(0),M
3v(0), . . . ?

There exists an n such that

v(n) = Mnv(0) = ked (some multiple of ed)

Now what happens at time step (n+ 1)?

v(n+1) = Mv(n) = M(ked) = k(Med) = k(λded) = ked

The population in the two restaurants
becomes constant after time step n.
See Proof Here

k1 k2p

1− p

q

1− q

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6
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Now instead of a stochastic matrix let us consider any square matrix A

Let p be the time step at which the sequence x0, Ax0, A
2x0, . . . approaches a

multiple of ed (the dominant eigenvector of A)

Apx0 = ked

Ap+1x0 = A(Apx0) = kAed = kλded

Ap+2x0 = A(Ap+1x0) = kλdAed = kλ2ded

Ap+nx0 = k(λd)ned

In general, if λd is the dominant eigenvalue of a matrix A, what would happen
to the sequence x0, Ax0, A

2x0, . . . if

|λd| > 1

(will explode)

|λd| < 1

(will vanish)

|λd| = 1

(will reach a steady state)

(We will use this in the course at some point)
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Module 6.2 : Linear Algebra - Basic Definitions
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We will see some more examples where eigenvectors are important, but before
that let’s revisit some basic definitions from linear algebra.
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Basis

A set of vectors ∈ Rn is called a basis, if they are linearly independent and every
vector ∈ Rn can be expressed as a linear combination of these vectors.
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Basis

A set of vectors ∈ Rn is called a basis, if they are linearly independent and every
vector ∈ Rn can be expressed as a linear combination of these vectors.

Linearly independent vectors

A set of n vectors v1, v2, . . . , vn is linearly independent if no vector in the set can
be expressed as a linear combination of the remaining n− 1 vectors.
In other words, the only solution to

c1v1 + c2v2 + . . . cnvn = 0 is c1 = c2 = · · · = cn = 0(ci’s are scalars)
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x = (1, 0)

y = (0, 1)

For example consider the space R2

Now consider the vectors

x =

[
1
0

]
and y =

[
0
1

]

Any vector

[
a
b

]
∈ R2, can be expressed as a

linear combination of these two vectors i.e[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
Further, x and y are linearly independent.
(the only solution to c1x + c2y = 0 is c1 =
c2 = 0)
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x = (1, 0)

y = (0, 1)

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R2 as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of x and y.

We could have chosen any 2 linearly
independent vectors in R2 as the basis vectors.

For example, consider the linearly
independent vectors, [2, 3]T and [5, 7]T .
See how any vector [a, b]T ∈ R2 can be
expressed as a linear combination of these
two vectors.

We can find x1 and x2 by solving a system of
linear equations.
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u1
u2

z =

[
z1
z2

] In general, given a set of linearly independent
vectors u1, u2, . . . un ∈ Rn, we can express any
vector z ∈ Rn as a linear combination of these
vectors.

z = α1u1 + α2u2 + · · ·+ αnun
z1
z2
...
zn

 = α1


u11
u12

...
u1n

+ α2


u21
u22

...
u2n

+ . . .+ αn


un1
un2

...
unn



z1
z2
...
zn

 =


u11 u21 . . . un1
u12 u22 . . . un2

...
...

...
...

u1n u2n . . . unn



α1

α2
...
αn


We can now find the αis using Gaussian
Elimination (Time Complexity: O(n3))

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



16/71

u1
u2

z =

[
z1
z2

] In general, given a set of linearly independent
vectors u1, u2, . . . un ∈ Rn, we can express any
vector z ∈ Rn as a linear combination of these
vectors.

z = α1u1 + α2u2 + · · ·+ αnun


z1
z2
...
zn

 = α1


u11
u12

...
u1n

+ α2


u21
u22

...
u2n

+ . . .+ αn


un1
un2

...
unn



z1
z2
...
zn

 =


u11 u21 . . . un1
u12 u22 . . . un2

...
...

...
...

u1n u2n . . . unn



α1

α2
...
αn


We can now find the αis using Gaussian
Elimination (Time Complexity: O(n3))

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



16/71

u1
u2

z =

[
z1
z2

] In general, given a set of linearly independent
vectors u1, u2, . . . un ∈ Rn, we can express any
vector z ∈ Rn as a linear combination of these
vectors.

z = α1u1 + α2u2 + · · ·+ αnun
z1
z2
...
zn

 = α1


u11
u12

...
u1n

+ α2


u21
u22

...
u2n

+ . . .+ αn


un1
un2

...
unn




z1
z2
...
zn

 =


u11 u21 . . . un1
u12 u22 . . . un2

...
...

...
...

u1n u2n . . . unn



α1

α2
...
αn


We can now find the αis using Gaussian
Elimination (Time Complexity: O(n3))

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



16/71

u1
u2

z =

[
z1
z2

] In general, given a set of linearly independent
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...
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
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...
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
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
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
z1
z2
...
zn

 =


u11 u21 . . . un1
u12 u22 . . . un2

...
...

...
...

u1n u2n . . . unn



α1

α2
...
αn


(Basically rewriting in matrix form)

We can now find the αis using Gaussian
Elimination (Time Complexity: O(n3))
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u1
u2

z =

[
a
b

]

θ
|→ z
|

α1α
2

Now let us see if we have orthonormal basis.

uTi uj = 0 ∀i 6= j and uTi ui = ‖ui‖2 = 1

Again we have:

z = α1u1 + α2u2 + . . .+ αnun

uT1 z = α1u
T
1 u1 + . . .+ αnu

T
1 un

= α1

We can directly find each αi using a dot
product between z and ui (time complexity
O(N))

The total complexity will be O(N2)
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z =
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a
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]

θ
|→ z
|

α1α
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α1 = |→z |cosθ = |→z | z
Tu1

|→z ||u1|
= zTu1

Similarly, α2 = zTu2.
When u1 and u2 are unit vectors
along the co-ordinate axes

z =

[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]

Now let us see if we have orthonormal basis.

uTi uj = 0 ∀i 6= j and uTi ui = ‖ui‖2 = 1

Again we have:

z = α1u1 + α2u2 + . . .+ αnun

uT1 z = α1u
T
1 u1 + . . .+ αnu

T
1 un

= α1

We can directly find each αi using a dot
product between z and ui (time complexity
O(N))

The total complexity will be O(N2)

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



18/71

Remember

An orthogonal basis is the most convenient basis that one can hope for.
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But what does any of this have to do with
eigenvectors?

Turns out that the eigenvectors can form a
basis.

In fact, the eigenvectors of a square symmetric
matrix are even more special.

Thus they form a very convenient basis.

Why would we want to use the eigenvectors as
a basis instead of the more natural co-ordinate
axes?

We will answer this question soon.
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Theorem 1

The eigenvectors of a matrix
A ∈ Rn×n having distinct
eigenvalues are linearly
independent.
Proof: See here
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a basis instead of the more natural co-ordinate
axes?
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Module 6.3 : Eigenvalue Decomposition
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Before proceeding let’s do a quick recap of eigenvalue decomposition.
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Let u1, u2, . . . , un be the eigenvectors of a matrix A and let λ1, λ2, . . . , λn be
the corresponding eigenvalues.

Consider a matrix U whose columns are u1, u2, . . . , un.
Now

AU = A

xu1y
x
u2y . . .

x
uny
 =

 x
Au1y

x
Au2y . . .

x
Auny


=

 x
λ1u1y

x
λ2u2y . . .

x
λnuny



=

xu1y
x
u2y . . .

x
uny


λ1 0 . . . 0

0 λ2
...

...
. . . 0

0 . . . 0 λn

 = UΛ

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of A.
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AU = UΛ
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AU = UΛ

If U−1 exists, then we can write,

A = UΛU−1 [eigenvalue decomposition]

U−1AU = Λ [diagonalization of A]

Under what conditions would U−1 exist?

If the columns of U are linearly independent [See proof here]
i.e. if A has n linearly independent eigenvectors.
i.e. if A has n distinct eigenvalues [sufficient condition, proof : Slide 19
Theorem 1]
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If A is symmetric then the situation is even more convenient.

The eigenvectors are orthogonal [proof : Slide 19 Theorem 2]

Further let’s assume, that the eigenvectors have been normalized [ uTi ui = 1]

Q = UTU =


← u1 →
← u2 →
. . .

← un →


xu1y

x
u2y . . .

x
uny


Each cell of the matrix, Qij is given by uTi uj

Qij = uTi uj = 0 if i 6= j

= 1 if i = j

∴ UTU = I (the identity matrix)

UT is the inverse of U (very convenient to calculate)
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Something to think about

Given the EVD, A = UΣUT ,
what can you say about the sequence x0, Ax0, A

2x0, . . . in terms of the eigen
values of A.
(Hint: You should arrive at the same conclusion we saw earlier)
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Theorem (one more important property of eigenvectors)

If A is a square symmetric N ×N matrix, then the solution to the following
optimization problem is given by the eigenvector corresponding to the largest
eigenvalue of A.

max
x

xTAx

s.t ‖x‖ = 1

and the solution to
min

x
xTAx

s.t ‖x‖ = 1

is given by the eigenvector corresponding to the smallest eigenvalue of A.
Proof: Next slide.
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This is a constrained optimization problem that can be solved using Lagrange
Multipliers:

L = xTAx− λ(xTx− 1)

∂L

∂x
= 2Ax− λ(2x) = 0 => Ax = λx

Hence x must be an eigenvector of A with eigenvalue λ.

Multiplying by xT :

xTAx = λxTx = λ(since xTx = 1)

Therefore, the critical points of this constrained problem are the eigenvalues of
A.

The maximum value is the largest eigenvalue, while the minimum value is the
smallest eigenvalue.
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The story so far...

The eigenvectors corresponding to different eigenvalues are linearly
independent.

The eigenvectors of a square symmetric matrix are orthogonal.

The eigenvectors of a square symmetric matrix can thus form a convenient basis.

We will put all of this to use.
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Module 6.4 : Principal Component Analysis and its
Interpretations
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The story ahead...

Over the next few slides we will introduce Principal Component Analysis and
see three different interpretations of it
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x

y
Consider the following data

Each point (vector) here is
represented using a linear
combination of the x and y axes
(i.e. using the point’s x and y
co-ordinates)

In other words we are using x and y
as the basis

What if we choose a different basis?
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x

y

u1

u2

For example, what if we use u1 and
u2 as a basis instead of x and y.

We observe that all the points have a
very small component in the direction
of u2 (almost noise)

It seems that the same data which
was originally in R2(x, y) can now be
represented in R1(u1) by making a
smarter choice for the basis
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x

y

u1

u2

Let’s try stating this more formally

Why do we not care about u2?

Because the variance in the data in
this direction is very small (all data
points have almost the same value in
the u2 direction)

If we were to build a classifier on
top of this data then u2 would not
contribute to the classifier as the
points are not distinguishable along
this direction
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x

y

u1

u2

In general, we are interested in
representing the data using fewer
dimensions such that

the data has
high variance along these dimensions

Is that all?

No, there is something else that we
desire. Let’s see what.

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



34/71

x

y

u1

u2

In general, we are interested in
representing the data using fewer
dimensions such that the data has
high variance along these dimensions

Is that all?

No, there is something else that we
desire. Let’s see what.

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



34/71

x

y

u1

u2

In general, we are interested in
representing the data using fewer
dimensions such that the data has
high variance along these dimensions

Is that all?

No, there is something else that we
desire. Let’s see what.

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



34/71

x

y

u1

u2

In general, we are interested in
representing the data using fewer
dimensions such that the data has
high variance along these dimensions

Is that all?

No, there is something else that we
desire. Let’s see what.

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



35/71

x y z

1 1 1
0.5 0 0
0.25 1 1
0.35 1.5 1.5
0.45 1 1
0.57 2 2.1
0.62 1.1 1
0.73 0.75 0.76
0.72 0.86 0.87

ρyz =

∑n
i=1(yi − y)(zi − z)√∑n

i=1(yi − y)2
√∑n

i=1(zi − z)2

Consider the following data

Is z adding any new information
beyond what is already contained in
y?

The two columns are highly
correlated (or they have a high
covariance)

In other words the column z
is redundant since it is linearly
dependent on y.
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x

y

u1

u2

In general, we are interested in
representing the data using fewer
dimensions such that

the data has high variance along these
dimensions

the dimensions are linearly
independent (uncorrelated)

(even better if they are orthogonal
because that is a very convenient
basis)
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Let p1, p2, · · · , pn be a set of such n linearly independent orthonormal vectors. Let
P be a n× n matrix such that p1, p2, · · · , pn are the columns of P .

Let x1, x2, · · · , xm ∈ Rn be m data points and let X be a matrix such that
x1, x2, · · · , xm are the rows of this matrix. Further let us assume that the data is
0-mean and unit variance.

We want to represent each xi using this new basis P .

xi = αi1p1 + αi2p2 + αi3p3 + · · ·+ αinpn

For an orthonormal basis we know that we can find these α′is using

αij = xTi pj =
[
← xi →

]T  ↑pj
↓


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In general, the transformed data x̂i is given by

x̂i =
[
← xTi →

]  ↑ ↑
p1 · · · pn
↓ ↓

 = xTi P

and

X̂ = XP (X̂ is the matrix of transformed points)
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Theorem:
If X is a matrix such that its columns have zero mean and if X̂ = XP then the
columns of X̂ will also have zero mean.

Proof: For any matrix A, 1TA gives us a row vector with the ith element
containing the sum of the ith column of A. (this is easy to see using the
row-column picture of matrix multiplication).
Consider

1T X̂ = 1TXP = (1TX)P

But 1TX is the row vector containing the sums of the columns of X. Thus
1TX = 0. Therefore, 1T X̂ = 0.
Hence the transformed matrix also has columns with sum = 0.

Theorem:
XTX is a symmetric matrix.
Proof: We can write (XTX)T = XT (XT )T = XTX
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Definition:
If X is a matrix whose columns are zero mean then Σ = 1

mX
TX is the covariance

matrix. In other words each entry Σij stores the covariance between columns i and
j of X.

Explanation: Let C be the covariance matrix of X. Let µi, µj denote the means
of the ith and jth column of X respectively. Then by definition of covariance, we
can write :

Cij =
1

m

m∑
k=1

(Xki − µi)(Xkj − µj)

=
1

m

m∑
k=1

XkiXkj (∵ µi = µj = 0)

=
1

m
XT

i Xj =
1

m
(XTX)ij
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X̂ = XP

Using the previous theorem & definition, we get 1
mX̂

T X̂ is the covariance matrix of
the transformed data. We can write :

1

m
X̂T X̂ =

1

m
(XP )

T
XP =

1

m
PTXTXP = PT

(
1

m
XTX

)
P = PT ΣP

Each cell i, j of the covariance matrix 1
mX̂

T X̂ stores the covariance between columns

i and j of X̂.

Ideally we want, (
1

m
X̂T X̂

)
ij

= 0 i 6= j ( covariance = 0)(
1

m
X̂T X̂

)
ij

6= 0 i = j ( variance 6= 0)

In other words, we want
1

m
X̂T X̂ = PT ΣP = D [ where D is a diagonal matrix ]
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We want,
P TΣP = D

But Σ is a square matrix and P is an orthogonal matrix

Which orthogonal matrix satisfies the following condition?

P TΣP = D

In other words, which orthogonal matrix P diagonalizes Σ?

Answer: A matrix P whose columns are the eigen vectors of Σ = XTX [By
Eigen Value Decomposition]

Thus, the new basis P used to transform X is the basis consisting of the eigen
vectors of XTX
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Why is this a good basis?

Because the eigen vectors of XTX are linearly independent (proof : Slide 19
Theorem 1)

And because the eigen vectors of XTX are orthogonal (∵ XTX is symmetric -
saw proof earlier)

This method is called Principal Component Analysis for transforming the data
to a new basis where the dimensions are non-redundant (low covariance) & not
noisy (high variance)

In practice, we select only the top-k dimensions along which the variance is
high (this will become more clear when we look at an alternalte interpretation
of PCA)
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Module 6.5 : PCA : Interpretation 2
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Given n orthogonal linearly independent vectors P = p1, p2, · · · , pn we can
represent xi exactly as a linear combination of these vectors.

xi =
n∑

j=1

αijpj [we know how to estimate α′ijs but we will come back to that later]

But we are interested only in the top-k dimensions (we want to get rid of noisy &
redundant dimensions)

x̂i =

k∑
j=1

αikpk

We want to select p′is such that we minimise the reconstructed error

e =

m∑
i=1

(xi − x̂i)T (xi − x̂i)
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e =

m∑
i=1

(xi − x̂i)T (xi − x̂i)

=
m∑
i=1

 n∑
j=1

αijpj −
k∑

j=1

αijpj

2

=

m∑
i=1

 n∑
j=k+1

αijpj

2

=

m∑
i=1

 n∑
j=k+1

αijpj

T  n∑
j=k+1

αijpj


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We want to minimize e

min
pk+1,pk+2,··· ,pn

n∑
j=k+1

pTj mCpj s.t. pTj pj = 1 ∀j = k + 1, k + 2, · · · , n

The solution to the above problem is given by the eigen vectors corresponding to
the smallest eigen values of C (Proof : refer Slide 26).

Thus we select P = p1, p2, · · · , pn as eigen vectors of C and retain only top-k eigen
vectors to express the data [or discard the eigen vectors k + 1, · · · , n]

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



47/71

We want to minimize e

min
pk+1,pk+2,··· ,pn

n∑
j=k+1

pTj mCpj s.t. pTj pj = 1 ∀j = k + 1, k + 2, · · · , n

The solution to the above problem is given by the eigen vectors corresponding to
the smallest eigen values of C (Proof : refer Slide 26).

Thus we select P = p1, p2, · · · , pn as eigen vectors of C and retain only top-k eigen
vectors to express the data [or discard the eigen vectors k + 1, · · · , n]

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



47/71

We want to minimize e

min
pk+1,pk+2,··· ,pn

n∑
j=k+1

pTj mCpj s.t. pTj pj = 1 ∀j = k + 1, k + 2, · · · , n

The solution to the above problem is given by the eigen vectors corresponding to
the smallest eigen values of C (Proof : refer Slide 26).

Thus we select P = p1, p2, · · · , pn as eigen vectors of C and retain only top-k eigen
vectors to express the data [or discard the eigen vectors k + 1, · · · , n]

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



48/71

Key Idea

Minimize the error in reconstructing xi after projecting the data on to a new basis.
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Let’s look at the ‘Reconstruction Error’ in the context of our toy example
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(3.3, 3)

x

y

u1u2

u1 = [1, 1] and u2 = [−1, 1] are the
new basis vectors

Let us convert them to unit vectors
u1 =

[
1√
2

1√
2

]
& u2 =

[
−1√
2

1√
2

]

Consider the point x = [3.3, 3] in the
original data

α1 = xTu1 = 6.3/
√

2
α2 = xTu2 = −0.3/

√
2

the perfect reconstruction of x is
given by (using n = 2 dimensions)

x = α1u1 + α2u2 =
[
3.3 3

]
But we are going to reconstruct it
using fewer (only k = 1 < n
dimensions, ignoring the low variance
u2 dimension)

x̂ = α1u1 =
[
3.15 3.15

]
(reconstruction with minimum error)
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3.15 3.15

]
(reconstruction with minimum error)
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Recap

The eigen vectors of a matrix with distinct eigenvalues are linearly independent

The eigen vectors of a square symmetric matrix are orthogonal

PCA exploits this fact by representing the data using a new basis comprising
only the top-k eigen vectors

The n − k dimensions which contribute very little to the reconstruction error
are discarded

These are also the directions along which the variance is minimum
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Module 6.6 : PCA : Interpretation 3
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We started off with the following wishlist

We are interested in representing the data using fewer dimensions such that

the dimensions have low covariance
the dimensions have high variance

So far we have paid a lot of attention to the covariance

It has indeed played a central role in all our analysis

But what about variance? Have we achieved our stated goal of high variance
along dimensions?

To answer this question we will see yet another interpretation of PCA
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The ith dimension of the transformed data X̂ is given by

X̂i = Xpi

The variance along this dimension is given by

X̂T
i X̂i

m
=

1

m
pTi X

TXpi︸ ︷︷ ︸
=

1

m
pTi λipi [∵ pi is the eigen vector of XTX]

=
1

m
λi p

T
i pi︸︷︷︸
=1

=
λi
m

Thus the variance along the ith dimension (ith eigen vector of XTX) is given
by the corresponding (scaled) eigen value.

Hence, we did the right thing by discarding the dimensions (eigenvectors)
corresponding to lower eigen values!
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A Quick Summary

We have seen 3 different interpretations of PCA

It ensures that the covariance between the new dimensions is minimized

It picks up dimensions such that the data exhibits a high variance across these
dimensions

It ensures that the data can be represented using less number of dimensions
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Module 6.7 : PCA : Practical Example
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Consider we are given a large number of
images of human faces (say, m images)

Each image is 100× 100 [10K dimensions]

We would like to represent and store the
images using much fewer dimensions (around
50-200)

We construct a matrix X ∈ Rm×10K

Each row of the matrix corresponds to 1 image

Each image is represented using 10K
dimensions
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X ∈ Rm×10K (as explained on the previous
slide)

We retain the top 100 dimensions
corresponding to the top 100 eigen vectors of
XTX

Note that XTX is a n× n matrix so its eigen
vectors will be n dimensional (n = 10K in this
case)

We can convert each eigen vector into a 100×
100 matrix and treat it as an image

Let’s see what we get

What we have plotted here are the first 16
eigen vectors of XTX (basically, treating each
10K dimensional eigen vector as a 100 × 100
dimensional image)
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These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

1∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

2∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

4∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

8∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

12∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

16∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

16∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

16∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



59/71

16∑
i=1

α1ipi

These images are called eigenfaces
and form a basis for representing any
face in our database

In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

In practice, we just need to store
p1, p2, · · · , pk (one time storage)

Then for each image i we just
need to store the scalar values
αi1, αi2, · · · , αik

This significantly reduces the storage
cost without much loss in image
quality
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Module 6.8 : Singular Value Decomposition
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Let us get some more perspective on eigen vectors before moving ahead
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Let v1, v2, · · · , vn be the eigen vectors of A and let λ1, λ2, · · · , λn be
corresponding eigen values

Av1 = λ1v1, Av2 = λ2v2, · · · , Avn = λnvn

If a vector x in Rn is represented using v1, v2, · · · , vn as basis then

x =

n∑
i=1

αivi

Now, Ax =

n∑
i=1

αiAvi =

n∑
i=1

αiλivi

The matrix multiplication reduces to a scalar multiplication if the eigen vectors
of A are used as a basis.
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So far all the discussion was centered around square matrices (A ∈ Rn×n)

What about rectangular matrices A ∈ Rm×n? Can they have eigen vectors?

Is it possible to have Am×nxn×1 = xn×1?

Not possible !

The result of Am×nxn×1 is a vector belonging to Rm (whereas x ∈ Rn)

So do we miss out on the advantage that a basis of eigen vectors provides
for square matrices (i.e. converting matrix multiplications into scalar
multiplications)?

We will see the answer to this question over the next few slides
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Note that matrix Am×n provides a transformation Rn → Rm

What if we could have pairs of vectors (v1, u1), (v2, u2), · · · , (vk, uk) such that vi ∈ Rn,
ui ∈ Rm and Avi = σiui

Further let’s assume that v1, · · · , vk, · · · , vn are orthogonal & thus form a basis V in Rn

Similarly let’s assume that u1, · · · , uk, · · · , um are orthogonal & thus form a basis U in Rm

Now what if every vector x ∈ Rn is represented using the basis V

x =
k∑

i=1

αivi [note we are using k instead of n ; will clarify this in a minute]

Ax =
k∑

i=1

αiAvi

=

k∑
i=1

αiσiui

Once again the matrix multiplication reduces to a scalar multiplication
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Let’s look at a geometric interpretation of this
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R
n

Row
space

of A

R mColumnspace
of A

A

dim=k=rank(A)
dim=k=rank(A)

Rn - Space of all vectors which can multiply with A to give Ax [ this is the space of
inputs of the function]

Rm - Space of all vectors which are outputs of the function Ax

We are interested in finding a basis U , V such that

V - basis for inputs
U - basis for outputs

such that if the inputs and outputs are represented using this basis then the operation
Ax reduces to a scalar operation
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What do we mean by saying that dimension of rowspace is k? If x ∈ Rn then
why is the dimension not n.

It means that of all the possible vectors in Rn only a subspace of vectors lying
in Rk can act as inputs to Ax and produce a non-zero output. The remaining
vectors in Rn−k will produce a zero output

Hence we need only k dimensions to represent x

x =
k∑

i=1

αivi
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Let’s look at a way of writing this as a matrix operation

Av1 = σ1u1, Av2 = σ2u2, · · · , Avk = σkuk

Am×nVn×k = Um×k Σk×k︸ ︷︷ ︸
diagonal matrix

If we have k orthogonal vectors (Vn×k) then using Gram Schmidt
orthogonalization, we can find n − k more orthogonal vectors to complete the
basis for Rn [We can do the same for U]

Am×nVn×n = Um×mΣm×n

UTAV = Σ [U−1 = UT ] A = UΣV T [V −1 = V T ]

Σ is a diagonal matrix with only the first k diagonal elements as non-zero

Now the question is how do we find V , U and Σ
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Suppose V , U and Σ exist, then

ATA = (UΣV T )T (UΣV T )

= V ΣTUTUΣV T

ATA = V Σ2V T

What does this look like?

Eigen Value decomposition of ATA

Similarly we can show that

AAT = UΣ2UT

Thus U and V are the eigen vectors of AAT and ATA respectively and Σ2 = Λ
where Λ is the diagonal matrix containing eigen values of ATA
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 A


m×n

=


↑ · · · ↑

u1 · · · uk
↓ · · · ↓


m×k

σ1 . . .

σk


k×k

← v1 →
...

← vk →


k×n

=

k∑
i=1

σiuiv
T
i

Theorem:

σ1u1v
T
1 is the best rank-1 approximation of the matrix A.

∑2
i=1 σiuiv

T
i is the best

rank-2 approximation of matrix A. In general,
∑k

i=1 σiuiv
T
i is the best rank-k

approximation of matrix A. In other words, the solution to

min ‖A−B‖2F is given by :

B =U.,kΣk,kV
T
k,. (minimizes reconstruction error of A)
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σi =
√
λi = singular value of A

U = left singular matrix of A

V = right singular matrix of A

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



71/71

σi =
√
λi = singular value of A

U = left singular matrix of A

V = right singular matrix of A

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



71/71

σi =
√
λi = singular value of A

U = left singular matrix of A

V = right singular matrix of A

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6


