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Module 6.1 : Eigenvalues and Eigenvectors
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e What happens when a matrix hits a
1 2
A= vector?
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e What happens when a matrix hits a
1 2
A= [ ] vector?
Ap — 7 @ The vector gets transformed into a
new vector (it strays from its path)

e The vector may also get scaled
> = [ 1 (elongated or shortened) in the
3 process.
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exist special vectors which refuse to

e For a given square matrix A, there
i
A=
stray from their path.
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exist special vectors which refuse to

e For a given square matrix A, there
i
A=
stray from their path.

@ These vectors are called eigenvectors.

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



exist special vectors which refuse to

] e For a given square matrix A, there
stray from their path.

@ These vectors are called eigenvectors.

e More formally,

Ax = - 3 !
T3 T Az = Az [direction remains the same]
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exist special vectors which refuse to

e For a given square matrix A, there
i
A=
stray from their path.

@ These vectors are called eigenvectors.

e More formally,

Ax = - 3 :
3] 7|1 Az = Az [direction remains the same]
1 @ The vector will only get scaled but
T = [ 1 ] will not change its direction.
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@ So what is so special about
[1 2] :
A= eigenvectors?
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@ So what is so special about
] eigenvectors?

o Why are they always in the limelight?

Prof. Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 6



@ So what is so special about
] eigenvectors?

o Why are they always in the limelight?

e It turns out that several properties

of matrices can be analyzed based

Ap — [ 3 ] —3 [ 1 ] on their eigenvalues (for example, see
spectral graph theory)
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@ So what is so special about
1 2 .
A= eigenvectors?
o Why are they always in the limelight?

e It turns out that several properties

of matrices can be analyzed based

Ap — [ 3 ] —3 [ 1 ] on their eigenvalues (for example, see
spectral graph theory)

e We will now see two cases where
o — [ 1 ] eigenvalues/vectors will help us in
this course
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o Let us assume that on day 0, k; students eat
Chinese food, and ko students eat Mexican food.
(Of course, no one eats in the mess!)
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. o Let us assume that on day 0, k; students eat
Chinese ~ Mexican Chinese food, and k9 students eat Mexican food.

Y
@ @ (Of course, no one eats in the mess!)
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. o Let us assume that on day 0, k; students eat
Chinese ~ Mexican Chinese food, and k9 students eat Mexican food.

Y
@ @ (Of course, no one eats in the mess!)

@ On each subsequent day i, a fraction p of the
_ [ k1 ] students who ate Chinese food on day (i — 1),
continue to eat Chinese food on day 4, and (1 —p)

shift to Mexican food.
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o Let us assume that on day 0, k; students eat

i Chinese food, and ko students eat Mexican food.
@ @ (Of course, no one eats in the mess!)

@ On each subsequent day i, a fraction p of the

_ [ k1 ] students who ate Chinese food on day (i — 1),

ko continue to eat Chinese food on day 4, and (1 —p)

shift to Mexican food.

e Similarly a fraction ¢ of students who ate Mexican
food on day (i — 1) continue to eat Mexican food
on day ¢, and (1 — ¢) shift to Chinese food.
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o Let us assume that on day 0, k; students eat

Ch@]fise Mexican Chinese food, and ko students eat Mexican food.

(Of course, no one eats in the mess!)

@ On each subsequent day i, a fraction p of the
o) = [ k1 ] students who ate Chinese food on day (i — 1),
ko continue to eat Chinese food on day 4, and (1 —p)

hift to Mexi food.
o = [p/ﬁ + (1= ks ] shift to Mexican foo

(1— p)k1 + gk e Similarly a fraction ¢ of students who ate Mexican

food on day (i — 1) continue to eat Mexican food
on day ¢, and (1 — ¢) shift to Chinese food.
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o Let us assume that on day 0, k; students eat

(Of course, no one eats in the mess!)

@ @ Chinese food, and ko students eat Mexican food.

@ On each subsequent day i, a fraction p of the
o) = [ k1 ] students who ate Chinese food on day (i — 1),
continue to eat Chinese food on day 4, and (1 —p)

] shift to Mexican food.

e Similarly a fraction ¢ of students who ate Mexican
food on day (i — 1) continue to eat Mexican food
] on day ¢, and (1 — ¢) shift to Chinese food.
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o Let us assume that on day 0, k; students eat

@ @ Chinese food, and ko students eat Mexican food.

(Of course, no one eats in the mess!)

@ On each subsequent day i, a fraction p of the

Vo) = [ k1 ] students who ate Chinese food on day (i — 1),
ko continue to eat Chinese food on day 4, and (1 —p)

o Pt + (1= q)ks Sl'liﬂf to Mexican' food. |
1 = (1 —p)ki + ks e Similarly a fraction ¢ of students who ate Mexican

) k: food on day (i — 1) continue to eat Mexican food
= [ p —4 } [ ! ] on day 4, and (1 — ¢) shift to Chinese food.
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. . o Let us assume that on day 0, k; students eat
Chinese  Mexican Chinese food, and ko students eat Mexican food.

@ @ (Of course, no one eats in the mess!)

@ On each subsequent day i, a fraction p of the

Vo) = [ k1 ] students who ate Chinese food on day (i — 1),
ko continue to eat Chinese food on day 4, and (1 —p)

o Pt + (1= q)ks Sl'liﬂf to Mexican' food. |
1 = (1 —p)ki + ks e Similarly a fraction ¢ of students who ate Mexican

) k: food on day (i — 1) continue to eat Mexican food
= [ p —4 } [ ! ] on day 4, and (1 — ¢) shift to Chinese food.
@ The number of customers in the two restaurants
vy = Moy is thus given by the following series:

U(O), M’U(O), MQ’U(O), M?”U(O), cee

In general, v(,,) = M"v g
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o This is a problem for the two restaurant
owners.
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o This is a problem for the two restaurant
owners.

@ The number of patrons is changing constantly.
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o This is a problem for the two restaurant
owners.

@ The number of patrons is changing constantly.

o Or is it? Will the system eventually reach

a steady state? (i.e. will the number

1—p of customers in the two restaurants become
constant over time?)
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Prof. Mitesh M. Khapra

This is a problem for the two restaurant
owners.
The number of patrons is changing constantly.

Or is it? Will the system eventually reach
a steady state? (i.e. will the number
of customers in the two restaurants become
constant over time?)

Turns out they will!
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Prof. Mitesh M. Khapra

This is a problem for the two restaurant
owners.

The number of patrons is changing constantly.

Or is it? Will the system eventually reach
a steady state? (i.e. will the number
of customers in the two restaurants become
constant over time?)

Turns out they will!

Let’s see how?
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Definition

Let A1, Ag,..., A\, be the
eigenvectors of an n X n matrix
A. )\ is called the dominant
eigen value of A if

’)\1‘ > ’)\z| i:2,...,n
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Definition

Let A1, Ag,..., A\, be the
eigenvectors of an n X n matrix
A. )\ is called the dominant
eigen value of A if

’)\1‘ > ’)\z| i:2,...,n

Definition

A matrix M is called a stochastic matrix if all the
entries are positive and the sum of the elements in
each column is equal to 1.

(Note that the matrix in our example is a
stochastic matrix)

v
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Definition

Let A1, Ag,..., A\, be the
eigenvectors of an n X n matrix
A. )\ is called the dominant
eigen value of A if

’)\1‘ > ’)\z| i:2,...,n

Theorem

The largest (dominant)
eigenvalue of a stochastic matrix
is 1.

See proof here

Definition

A matrix M is called a stochastic matrix if all the
entries are positive and the sum of the elements in
each column is equal to 1.

(Note that the matrix in our example is a
stochastic matrix)

v
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Definition

Let A1, Ag,..., A\, be the
eigenvectors of an n X n matrix
A. )\ is called the dominant
eigen value of A if

’)\1‘ > ’)\z| i:2,...,n

Theorem

The largest (dominant)
eigenvalue of a stochastic matrix
is 1.

See proof here

Definition

A matrix M is called a stochastic matrix if all the
entries are positive and the sum of the elements in
each column is equal to 1.

(Note that the matrix in our example is a
stochastic matrix)

Theorem

If Ais a n X n square matrix with a dominant
eigenvalue, then the sequence of vectors given by
Avg, A%vg, ..., A™vy, ... approaches a multiple of
the dominant eigenvector of A.

(the theorem is slightly misstated here for ease of
explanation)
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o Let e4 be the dominant eigenvector of M and
Aq¢ = 1 the corresponding dominant eigenvalue
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https://www.quora.com/Why-does-repeatedly-multiplying-a-vector-by-a-square-matrix-cause-the-vector-to-converge-on-or-along-the-matrixs-eigenvector

o Let e4 be the dominant eigenvector of M and
Aq¢ = 1 the corresponding dominant eigenvalue

o Given the previous definitions and theorems, p q
what can you say about the sequence
MU(O),MQ’U(O),MS’U(O),...? 1_q
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o Let e4 be the dominant eigenvector of M and
Aq¢ = 1 the corresponding dominant eigenvalue

o Given the previous definitions and theorems,
what can you say about the sequence
MU(O),MQ’U(O),MS’U(O),...? 1_q

@ There exists an n such that

V(ny = M"v () = keq (some multiple of e4)
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https://www.quora.com/Why-does-repeatedly-multiplying-a-vector-by-a-square-matrix-cause-the-vector-to-converge-on-or-along-the-matrixs-eigenvector

o Let e4 be the dominant eigenvector of M and
Aq¢ = 1 the corresponding dominant eigenvalue

o Given the previous definitions and theorems,
what can you say about the sequence
MU(O),MQ’U(O),MS’U(O),...? 1_q

@ There exists an n such that
V(ny = M"v () = keq (some multiple of e4)
e Now what happens at time step (n + 1)?

U(n—&-l) = MU(n) = M(ked) = k(Med) = k()\ded) = ked
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https://www.quora.com/Why-does-repeatedly-multiplying-a-vector-by-a-square-matrix-cause-the-vector-to-converge-on-or-along-the-matrixs-eigenvector

o Let e4 be the dominant eigenvector of M and
Aq¢ = 1 the corresponding dominant eigenvalue

o Given the previous definitions and theorems,
what can you say about the sequence
MU(O),MQ’U(O),MS’U(O),...? 1_q

@ There exists an n such that
V(ny = M"v () = keq (some multiple of e4)
e Now what happens at time step (n + 1)?
U(n—&-l) = MU(n) = M(ked) = k(Med) = k()\ded) = ked

o The population in the two restaurants
becomes constant after time step n.
See Proof Here
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o Now instead of a stochastic matrix let us consider any square matrix A
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

ApiL‘o = k:ed
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ...

multiple of ey (the dominant eigenvector of A)

ApiL‘o = k:ed

APy = A(APxg) = kAeg = k)geq
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ...

multiple of ey (the dominant eigenvector of A)
ApiL‘o = k:ed
APy = A(APxg) = kAeg = k)geq
Ap+2$0 = A(Aerll’o) = k)\dAed = k)\?led
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ...

multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
Ap+2$0 = A(Aerll’o) = k)\dAed = k)\?led
Ap+n$0 =
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ...

multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq

o In general, if Aj is the dominant eigenvalue of a matrix A, what would happen
to the sequence xq, Azg, A%xg, ... if
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq

o In general, if Aj is the dominant eigenvalue of a matrix A, what would happen
to the sequence xq, Azg, A%xg, ... if

° |/\d|>]-
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq

o In general, if Aj is the dominant eigenvalue of a matrix A, what would happen
to the sequence xq, Azg, A%xg, ... if

o |Ag| > 1 (will explode)
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq

o In general, if Aj is the dominant eigenvalue of a matrix A, what would happen
to the sequence xq, Azg, A%xg, ... if
o |Ag| > 1 (will explode)
° |)\d| <1
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq

o In general, if Aj is the dominant eigenvalue of a matrix A, what would happen
to the sequence xq, Azg, A%xg, ... if
o |Ag| > 1 (will explode)
o |Ag] < 1 (will vanish)
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq

o In general, if Aj is the dominant eigenvalue of a matrix A, what would happen
to the sequence xq, Azg, A%xg, ... if
o |Ag| > 1 (will explode)
o |Ag] < 1 (will vanish)
o [N\ =1
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq

o In general, if Aj is the dominant eigenvalue of a matrix A, what would happen
to the sequence xq, Azg, A%xg, ... if
o |Ag| > 1 (will explode)
o |Ag] < 1 (will vanish)
o |Ag| =1 (will reach a steady state)
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o Now instead of a stochastic matrix let us consider any square matrix A

o Let p be the time step at which the sequence zg, Azg, A%z, ... approaches a
multiple of ey (the dominant eigenvector of A)

APxo = key
APy = A(APxg) = kAeg = k)geq
APT2p = A(APHQ:O) = kMjAeg = k)\?led
AP 20 = k(Ag)"eq

o In general, if Aj is the dominant eigenvalue of a matrix A, what would happen
to the sequence xq, Azg, A%xg, ... if
o |Ag| > 1 (will explode)
o |Ag] < 1 (will vanish)
o |Ag| =1 (will reach a steady state)

o (We will use this in the course at some point)
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Module 6.2 : Linear Algebra - Basic Definitions
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o We will see some more examples where eigenvectors are important, but before
that let’s revisit some basic definitions from linear algebra.
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Basis
A set of vectors € R” is called a basis, if they are linearly independent and every
vector € R"™ can be expressed as a linear combination of these vectors.
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Basis
A set of vectors € R” is called a basis, if they are linearly independent and every
vector € R"™ can be expressed as a linear combination of these vectors.

Linearly independent vectors

A set of n vectors vy, v9,...,v, is linearly independent if no vector in the set can
be expressed as a linear combination of the remaining n — 1 vectors.
In other words, the only solution to

c1v1 + cova + .. .cpupy =01is ¢p = cg = -+ - = ¢, = 0(¢; s are scalars)
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e For example consider the space R?

Y= (07 1)

x = (1,0)
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e For example consider the space R?

@ Now consider the vectors

[

Y= (07 1)

x = (1,0)
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Y= (07 1)

e For example consider the space R?

@ Now consider the vectors

[

o Any vector € R?, can be expressed as a

a
b

linear combination of these two vectors i.e

x = (1,0)

2= lo oY)
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(]

For example consider the space R?

Now consider the vectors

[

Any vector

(]

y=1(0,1) € R?, can be expressed as a

a
b

linear combination of these two vectors i.e

r=(1,0) [HZ@[H”[H

o Further, x and y are linearly independent.
(the only solution to cijz + coy = 0 is ¢ =
Cy = 0)
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o In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

Y= (07 1)

x = (1,0)
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o In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

@ And indeed we are used to representing all
vectors in R? as a linear combination of these
two vectors.

Y= (07 1)

x = (1,0)
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Y= (07 1)

(]

("]

z = (1,0)

Prof. Mitesh M. Khapra

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R? as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of z and y.
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Y= (07 1)

z = (1,0)

Prof. Mitesh M. Khapra

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R? as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of z and y.

We could have chosen any 2 linearly
independent vectors in R? as the basis vectors.
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Y= (07 1)

z = (1,0)

Prof. Mitesh M. Khapra

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R? as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of z and y.

We could have chosen any 2 linearly
independent vectors in R? as the basis vectors.

For  example, consider  the linearly
independent vectors, [2,3]7 and [5,7]7.
See how any vector [a,b]T € R? can be
expressed as a linear combination of these
two vectors.
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Y= (07 1)

Prof. Mitesh M. Khapra

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R? as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of z and y.

We could have chosen any 2 linearly
independent vectors in R? as the basis vectors.

For  example, consider  the linearly
independent vectors, [2,3]7 and [5,7]7.
See how any vector [a,b]T € R? can be
expressed as a linear combination of these
two vectors.
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Y= (07 1)

Prof. Mitesh M. Khapra

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R? as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of z and y.

We could have chosen any 2 linearly
independent vectors in R? as the basis vectors.

For  example, consider  the linearly
independent vectors, [2,3]7 and [5,7]7.
See how any vector [a,b]T € R? can be
expressed as a linear combination of these
two vectors.

We can find z; and x2 by solving a system of
linear equations.

CS7015 (Deep Learning) : Lecture 6



o
o
o
Y= (07 1)
(]
T = (170)
o
a = 2x1 + bxo
b= 3%1 + 7%2
(]

Prof. Mitesh M. Khapra

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R? as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of z and y.

We could have chosen any 2 linearly
independent vectors in R? as the basis vectors.

For  example, consider  the linearly
independent vectors, [2,3]7 and [5,7]7.
See how any vector [a,b]T € R? can be
expressed as a linear combination of these
two vectors.

We can find z; and x2 by solving a system of
linear equations.
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o In general, given a set of linearly independent

2 vectors uy, us, . .. u, € R" we can express any
z = [ 2 ] vector z € R"™ as a linear combination of these
vectors.

u1
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o In general, given a set of linearly independent

2 vectors uy, us, . .. u, € R" we can express any
z = [ 2 ] vector z € R"™ as a linear combination of these
vectors.

z = oul + agug + -+ -+ Qpln

u1
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Prof. Mitesh M. Khapra

In general, given a set of linearly independent
vectors uy, us, . .. u, € R" we can express any
vector z € R™ as a linear combination of these
vectors.

z = oul + agug + -+ -+ Qpln

21 U1l U21 Unl
z2 U12 U22 Un2
= . + a2 . +...ta,

Zn Uln U2n, Unn
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o In general, given a set of linearly independent

vectors uy, us, ... u, € R™, we can express an
21 1, U2, n ; b
z= 2 vector z € R™ as a linear combination of these
vectors.
z = oul + agug + -+ -+ Qpln
U2 z1 U1 u21 Unl
U1 29 U2 U2 U2
= . + a9 . +...+a,
L #n ] Uln U2n, Unn
z1 Uy U221 ... Upl aq
Z9 U112 U292 o Up2 a9
Ln | Ulp U2n ... Upp Qn

(Basically rewriting in matrix form)
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o In general, given a set of linearly independent

vectors uy, us, ... u, € R™, we can express an
21 1, U2, n ; b
z= 2 vector z € R™ as a linear combination of these
vectors.
z = oul + agug + -+ -+ Qpln
U2 z1 U1 u21 Unl
U1 29 U2 U2 U2
= . + a9 . +...+a,
L #n ] Uln U2n, Unn
z1 Uy U221 ... Upl aq
Z9 U112 U292 o Up2 a9
Ln | Ulp U2n ... Upp Qn

o We can now find the «;s using Gaussian
Elimination (Time Complexity: O(n?))
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@ Now let us see if we have orthonormal basis.
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@ Now let us see if we have orthonormal basis.

o ulu; =0Vi#jand ulu; = |u;l|> =1
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@ Now let us see if we have orthonormal basis.
o ulu; =0Vi#jand ulu; = |u;l|> =1

o Again we have:

2= a1ul + agug + ... + apuy
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@ Now let us see if we have orthonormal basis.
o ulu; =0Vi#jand ulu; = |u;l|> =1

o Again we have:

2= a1ul + agug + ... + apuy

T T T
Ul 2= qrui Ul + ...+ apuy Uy
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@ Now let us see if we have orthonormal basis.
o ulu; =0Vi#jand ulu; = |u;l|> =1

o Again we have:

2= a1ul + agug + ... + apuy

T T T
Ul 2= qrui Ul + ...+ apuy Uy

:al
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@ Now let us see if we have orthonormal basis.
o ulu; =0Vi#jand ulu; = |u;l|> =1

o Again we have:

2= a1ul + agug + ... + apuy

T T T
Ul 2= qrui Ul + ...+ apuy Uy

:al

@ We can directly find each «; using a dot
product between z and wu; (time complexity

O(N))
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o Now let us see if we have orthonormal basis.
o ulu; =0Vi#jand ulu; = |u;l|> =1
o Again we have:
2= a1ul + agug + ... + apuy
T T T
Ul 2= qrui Ul + ...+ apuy Uy
= al
o We can directly find each a; using a dot

product between z and wu; (time complexity
O(N))
o The total complexity will be O(N?)
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Now let us see if we have orthonormal basis.
ulu; =0Vi+#jand ulu; = |Ju]]? =1

Again we have:

(]

(]

(]

2= a1ul + agug + ... + apuy

T T T
Uy 2= qrui Ul + ...+ apuy Uy

:al

We can directly find each «; using a dot

=[zZl5—=72w product between z and wu; (time complexity
O(N))

o The total complexity will be O(N?)

1
N
~
S
N
(4]
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Now let us see if we have orthonormal basis.
ulu; =0Vi+#jand ulu; = |Ju]]? =1

Again we have:

(]

(]

(]

2= a1ul + agug + ... + apuy

T T T
Uy 2= qrui Ul + ...+ apuy Uy

:al

We can directly find each «; using a dot
=|z|= =z u product between z and wu; (time complexity

O(N))
Similarly, as = 2% us. e The total complexity will be O(N?)

1
N
~
g
N
(4]
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Now let us see if we have orthonormal basis.

(]

ulu; =0Vi+#jand ulu; = |Ju]]? =1

I\

I
—
>
[EE—"

(]

(]

Again we have:

2= a1ul + agug + ... + apuy

Uy T T T
9/1 UL Z = 01U U + ... + apU] Up
o — o

2 leosd = |2 2Ty T o We can directly find each «; using a dot
ay = |z|cost = |z u1 product between z and wu; (time complexity
| 2 ][u
O(N))
Similarly, o = 27 us. e The total complexity will be O(N?)

When w1 and ug are unit vectors
along the co-ordinate axes

=[5 [{] 0
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Remember
An orthogonal basis is the most convenient basis that one can hope for. }
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o But what does any of this have to do with
eigenvectors?
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o But what does any of this have to do with
eigenvectors?

@ Turns out that the eigenvectors can form a
basis.
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o But what does any of this have to do with

Theorem 1 eigenvectors?

The eigenvectors of a matrix
A € R™™ having distinct
eigenvalues are linearly
independent.

Proof: See here

@ Turns out that the eigenvectors can form a
basis.
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o But what does any of this have to do with

Theorem 1 eigenvectors?

The eigenvectors of a matrix
A € R™™ having distinct
eigenvalues are linearly
independent.

Proof: See here

@ Turns out that the eigenvectors can form a
basis.

o In fact, the eigenvectors of a square symmetric
matrix are even more special.
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o But what does any of this have to do with

Theorem 1 eigenvectors?

The eigenvectors of a matrix
A € R™™ having distinct
eigenvalues are linearly
independent.

Proof: See here

@ Turns out that the eigenvectors can form a
basis.

o In fact, the eigenvectors of a square symmetric
matrix are even more special.

Theorem 2

The eigenvectors of a square
symmetric matrix are
orthogonal.

Proof: See here

Prof. Mitesh M. Khapra 7015 (Deep Learning Lecture 6


https://math.stackexchange.com/questions/29371/how-to-prove-that-eigenvectors-from-different-eigenvalues-are-linearly-independe
https://math.stackexchange.com/questions/82467/eigenvectors-of-real-symmetric-matrices-are-orthogonal

o But what does any of this have to do with

Theorem 1 eigenvectors?

The eigenvectors of a matrix
A € R™™ having distinct
eigenvalues are linearly
independent.

Proof: See here

@ Turns out that the eigenvectors can form a
basis.

In fact, the eigenvectors of a square symmetric
matrix are even more special.

(]

Thus they form a very convenient basis.
Theorem 2

The eigenvectors of a square
symmetric matrix are
orthogonal.

Proof: See here
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o But what does any of this have to do with

Theorem 1 eigenvectors?

The eigenvectors of a matrix
A € R™™ having distinct
eigenvalues are linearly
independent.

Proof: See here

@ Turns out that the eigenvectors can form a
basis.

o In fact, the eigenvectors of a square symmetric
matrix are even more special.

@ Thus they form a very convenient basis.

Theorem 2 o Why would we want to use the eigenvectors as
The eigenvectors of a square a basis instead of the more natural co-ordinate
symmetric matrix are axes?

orthogonal.

Proof: See here
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o But what does any of this have to do with

Theorem 1 eigenvectors?

The eigenvectors of a matrix
A € R™™ having distinct
eigenvalues are linearly
independent.

Proof: See here

@ Turns out that the eigenvectors can form a
basis.

o In fact, the eigenvectors of a square symmetric
matrix are even more special.

@ Thus they form a very convenient basis.

Theorem 2 o Why would we want to use the eigenvectors as
The eigenvectors of a square a basis instead of the more natural co-ordinate
symmetric matrix are axes?

orthogonal. o We will answer this question soon.

Proof: See here
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Module 6.3 : Eigenvalue Decomposition
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Before proceeding let’s do a quick recap of eigenvalue decomposition.
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.
o Consider a matrix U whose columns are uy,us, . .., Upy.
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.

o Consider a matrix U whose columns are uy,us, . .., Upy.

o Now
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.

o Consider a matrix U whose columns are uy,us, . .., Upy.
o Now
AU = A [ur us ... up

Lol l
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.

o Consider a matrix U whose columns are uy,us, . .., Upy.
o Now
AU = A |ur U2 ... Un| = |Auy Aus ... Auy,

R
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.

o Consider a matrix U whose columns are uy,us, . .., Upy.
o Now
AU = A |ur U2 ... Un| = |Auy Aus ... Auy,

R
1 |

= )\1U1 )\QUQ )\nun

(- l
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.

o Consider a matrix U whose columns are uy,us, . .., Upy.
o Now
T T} T 1 T
AU = A |ur U2 ... Un| = |Auy Aus ... Auy,
Ll L I A l

1 |

= )\1U1 )\QUQ )\nun
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.

o Consider a matrix U whose columns are uy,us, . .., Upy.
o Now
T T} T 1 T
AU = A |ur U2 ... Un| = |Auy Aus ... Auy,
Ll L I A l

1 |

= )\1U1 )\QUQ )\nun
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.

o Consider a matrix U whose columns are uy,us, . .., Upy.
o Now
T T} T 1
AU = A |ur U2 ... Un| = |Auy Aus ... Auy,
Ll L I A l

1 |

= )\1U1 )\QUQ )\nun
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o Let ui,uo,...,u, be the eigenvectors of a matrix A and let A1, Ao, ..., Ay be
the corresponding eigenvalues.

o Consider a matrix U whose columns are uy,us, . .., Upy.
o Now
AU = A |ur U2 ... Un| = |Auy Aus ... Auy,

L U l

1 T
= )\1U1 )\QUQ )\nun
L] L]
] A0 0
B A A N -
R l 0
0 0 n

@ where A is a diagonal matrix whose diagonal elementg are.-the eigenvalues of A.
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AU =UA

S701



AU =UA

o If U™! exists, then we can write,

A=UAU"' [eigenvalue decomposition]
U AU = A [diagonalization of A]
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AU =UA

o If U™! exists, then we can write,

A=UAU"' [eigenvalue decomposition]
U AU = A [diagonalization of A]

e Under what conditions would U~} exist?
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AU =UA

o If U™! exists, then we can write,

A=UAU"' [eigenvalue decomposition]
U AU = A [diagonalization of A]

o Under what conditions would U~ exist?
o If the columns of U are linearly independent [See proof here]
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AU =UA

o If U™! exists, then we can write,

A=UAU"' [eigenvalue decomposition]
U AU = A [diagonalization of A]

e Under what conditions would U~} exist?

o If the columns of U are linearly independent [See proof here]
e i.e. if A has n linearly independent eigenvectors.
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AU =UA

o If U™! exists, then we can write,

A=UAU"' [eigenvalue decomposition]
U AU = A [diagonalization of A]

e Under what conditions would U~ exist?

o If the columns of U are linearly independent [See proof here]
e i.e. if A has n linearly independent eigenvectors.

o i.e. if A has n distinct eigenvalues [sufficient condition, proof : Slide 19
Theorem 1]

Prof. Mitesh M. Khapra
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o If A is symmetric then the situation is even more convenient.
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o If A is symmetric then the situation is even more convenient.

@ The eigenvectors are orthogonal [proof : Slide 19 Theorem 2]
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o If A is symmetric then the situation is even more convenient.
@ The eigenvectors are orthogonal [proof : Slide 19 Theorem 2]

o Further let’s assume, that the eigenvectors have been normalized [ ulu; = 1]

— Uy —
Q:UTU: Uz Jl JQ Jn
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o If A is symmetric then the situation is even more convenient.
@ The eigenvectors are orthogonal [proof : Slide 19 Theorem 2]
o Further let’s assume, that the eigenvectors have been normalized [ ulu; = 1]
— Uy —
T — U — T T T
Q:U U = Uy U2 ... Up
— up — Ll l
e Each cell of the matrix, @);; is given by uiTuj

Qij:u?uj ZOifi%j
=1lifi=j

. UTU =T (the identity matrix)
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o If A is symmetric then the situation is even more convenient.
@ The eigenvectors are orthogonal [proof : Slide 19 Theorem 2]
o Further let’s assume, that the eigenvectors have been normalized [ ulu; = 1]
— Uy —
T — U — T T T
Q:U U = Uy U2 ... Up
— up — Ll l
e Each cell of the matrix, @);; is given by uiTuj

Qij:u?uj ZOifi%j
=1ifi=j
. UTU =T (the identity matrix)

o UT is the inverse of U (very convenient to calculate)
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Something to think about

e Given the EVD, A =UXUT,
what can you say about the sequence zg, Axg, A%z, ... in terms of the eigen
values of A.
(Hint: You should arrive at the same conclusion we saw earlier)
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Theorem (one more important property of eigenvectors)

If A is a square symmetric N x N matrix, then the solution to the following
optimization problem is given by the eigenvector corresponding to the largest
eigenvalue of A.

max z! Ax
T
st lz|| =1
and the solution to
min 27 Ax
T
stz =1

is given by the eigenvector corresponding to the smallest eigenvalue of A.
Proof: Next slide.
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o This is a constrained optimization problem that can be solved using Lagrange
Multipliers:

L=aTAz - \azTz-1)

oL
£f2Ax—)\(2w)f0f> Az = Mz
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o This is a constrained optimization problem that can be solved using Lagrange
Multipliers:

L=aTAz - \azTz-1)
oL

— =2Az - A\22) =0=> Az =Xz
Ox

@ Hence x must be an eigenvector of A with eigenvalue A.
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o This is a constrained optimization problem that can be solved using Lagrange
Multipliers:

L=aTAz - \azTz-1)
oL

— =2Az - A\22) =0=> Az =Xz
Ox

@ Hence x must be an eigenvector of A with eigenvalue A.

e Multiplying by «7T:

T Az = XaTx = \(since 272 = 1)
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o This is a constrained optimization problem that can be solved using Lagrange
Multipliers:

L=aTAz - \azTz-1)
oL

— =2Az - A\22) =0=> Az =Xz
Ox

@ Hence x must be an eigenvector of A with eigenvalue A.

e Multiplying by «7T:
T Az = XaTx = \(since 272 = 1)

o Therefore, the critical points of this constrained problem are the eigenvalues of

A.
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This is a constrained optimization problem that can be solved using Lagrange
Multipliers:

L=aTAz - \azTz-1)
oL

— =2Az - A\22) =0=> Az =Xz
Ox

Hence x must be an eigenvector of A with eigenvalue \.
Multiplying by z':

T Az = XaTx = \(since 272 = 1)

Therefore, the critical points of this constrained problem are the eigenvalues of

A.

The maximum value is the largest eigenvalue, while the minimum value is the
smallest eigenvalue.
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The story so far...




The story so far...

o The eigenvectors corresponding to different eigenvalues are linearly
independent.
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The story so far...
o The eigenvectors
independent.
o The eigenvectors of a square symmetric matrix are orthogonal.

corresponding to different eigenvalues are linearly
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The story so far...
o The eigenvectors corresponding to different eigenvalues are linearly
independent.
o The eigenvectors of a square symmetric matrix are orthogonal.

o The eigenvectors of a square symmetric matrix can thus form a convenient basis.

Prof. Mitesh M. K ra, 7015 (Deep Learning) : Lecture 6



The story so far...
o The eigenvectors corresponding to different eigenvalues are linearly

independent.
o The eigenvectors of a square symmetric matrix are orthogonal.

o The eigenvectors of a square symmetric matrix can thus form a convenient basis.

e We will put all of this to use.
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Module 6.4 : Principal Component Analysis and its
Interpretations
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The story ahead...




The story ahead...

@ Over the next few slides we will introduce Principal Component Analysis and
see three different interpretations of it

Prof. Mitesh M. Khapr 7015 (Deep Learning Lecture 6



o Consider the following data
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o Consider the following data

e Each point (vector) here is
- represented using a linear

:._;v_-- combination of the z and y axes
_5'.-_&.""‘ (i.e.  using the point’s = and y
P co-ordinates)
&
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o Consider the following data

e Each point (vector) here is
- represented using a linear
:._;v_-- combination of the z and ¥y axes
‘_-,5"'-“?‘ (i.e.  using the point’s = and y
i co-ordinates)
‘F,_-,_{r‘"' @ In other words we are using x and y
as the basis
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o Consider the following data

e Each point (vector) here is
- represented using a linear
:._;v_-- combination of the z and ¥y axes
‘_-,5"'-“?‘ (i.e.  using the point’s = and y
i co-ordinates)
‘F,_-,_{r‘"' @ In other words we are using x and y
as the basis

e What if we choose a different basis?
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o For example, what if we use u; and
ug as a basis instead of x and y.

U2
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o For example, what if we use u; and
ug as a basis instead of x and y.

@ We observe that all the points have a
very small component in the direction

U2 of ug (almost noise)
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o For example, what if we use u; and
ug as a basis instead of x and y.

@ We observe that all the points have a
very small component in the direction
of uy (almost noise)

o It seems that the same data which
was originally in R?(z,y) can now be
represented in R!(u;) by making a
T smarter choice for the basis
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o Let’s try stating this more formally

U2
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o Let’s try stating this more formally

e Why do we not care about ug?

U2
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o Let’s try stating this more formally
e Why do we not care about ug?

@ Because the variance in the data in
this direction is very small (all data
points have almost the same value in
the ug direction)

U2
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o Let’s try stating this more formally
e Why do we not care about ug?

@ Because the variance in the data in
this direction is very small (all data
points have almost the same value in
the ug direction)

o If we were to build a classifier on
top of this data then uy would not
contribute to the classifier as the
points are not distinguishable along
this direction
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o In general, we are interested in
representing the data using fewer
dimensions such that

U2
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o In general, we are interested in
representing the data using fewer
dimensions such that the data has
high variance along these dimensions

U2
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o In general, we are interested in
representing the data using fewer
dimensions such that the data has
high variance along these dimensions

U2 o Is that all?
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o In general, we are interested in
representing the data using fewer
dimensions such that the data has
high variance along these dimensions

o Is that all?

e No, there is something else that we
desire. Let’s see what.

U2
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X y V/
1 1 1
0.5 0 0
0.25 1 1
0.35 15 15
0.45 1 1
0.57 2.1
0.62 1.1 1
0.73 0.75 0.76
0.72 0.86 0.87

Prof. Mitesh M. Khapra

o Consider the following data
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X y V/
1 1 1
0.5 0 0
0.25 1 1
0.35 15 15
0.45 1 1
0.57 2.1
0.62 1.1 1
0.73 0.75 0.76
0.72 0.86 0.87

Prof. Mitesh M. Khapra

o Consider the following data

o Is 2z adding any new information
beyond what is already contained in

y?
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o Consider the following data

x y z

1 1 1 o Is 2z adding any new information
0.5 0 0 beyond what is already contained in
025 1 1 y?

035 1.5 15 e The two columns are highly
0.45 1 1 correlated (or they have a high
0.57 2 2.1 covariance)

0.62 1.1 1

0.73 0.75 0.76
0.72 0.86 0.87

_ i (Wi —y)(zi — )
\/Z?:1 (yi — 5)2\/2?:1(21' —Z)?

Pyz
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o Consider the following data

x y z
1 1 1 o Is 2z adding any new information
0.5 0 0 beyond what is already contained in
025 1 1 y?

035 1.5 15 e The two columns are highly
0.45 1 1 correlated (or they have a high
0.57 2 2.1 covariance)

0.62 1.1 1

@ In other words the column =z
is redundant since it is linearly
dependent on y.

0.73 0.75 0.76
0.72 0.86 0.87

_ i (Wi —y)(zi — )
\/Z?:1 (yi — 5)2\/2?:1(21' —Z)?

Pyz
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In general, we are interested in
representing the data using fewer
dimensions such that

U2
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In general, we are interested in
representing the data using fewer
dimensions such that

o the data has high variance along these

U9 dimensions

Prof. Mitesh M. Khapra 7015 (Deep Learning Lecture 6



In general, we are interested in
representing the data using fewer
dimensions such that

o the data has high variance along these
U9 dimensions
o the dimensions are linearly

independent (uncorrelated)
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In general, we are interested in
representing the data using fewer
dimensions such that

o the data has high variance along these

U9 dimensions

o the dimensions are linearly
independent (uncorrelated)

o (even better if they are orthogonal
because that is a very convenient
basis)
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Let p1,p2, -+ ,pn be a set of such n linearly independent orthonormal vectors. Let
P be a n x n matrix such that pi,ps,--- ,pn, are the columns of P.
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Let p1,p2, -+ ,pn be a set of such n linearly independent orthonormal vectors. Let

P be a n x n matrix such that pi,ps,--- ,pn, are the columns of P.
Let x1,29, -+, xy; € R™ be m data points and let X be a matrix such that
r1,T9, - , T, are the rows of this matrix. Further let us assume that the data is

0-mean and unit variance.
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Let p1,p2, -+ ,pn be a set of such n linearly independent orthonormal vectors. Let

P be a n x n matrix such that pi,ps,--- ,pn, are the columns of P.
Let x1,29, -+, xy; € R™ be m data points and let X be a matrix such that
r1,T9, - , T, are the rows of this matrix. Further let us assume that the data is

0-mean and unit variance.

We want to represent each x; using this new basis P.

T = Q1p1 + QP2 + Qi3ps + -+ QunPn
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Let p1,p2, -+ ,pn be a set of such n linearly independent orthonormal vectors. Let

P be a n x n matrix such that pi,ps,--- ,pn, are the columns of P.
Let x1,29, -+, xy; € R™ be m data points and let X be a matrix such that
r1,T9, - , T, are the rows of this matrix. Further let us assume that the data is

0-mean and unit variance.
We want to represent each x; using this new basis P.
T; = ay1p1 + Qop2 + @i3Pp3 + -0 + QinPn

For an orthonormal basis we know that we can find these a/s using

/]\
ag=alp=[— @ =] |p;

1
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In general, the transformed data z; is given by
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In general, the transformed data z; is given by

T T
T = [<— xt %] pL - pu| =2lP
} +

and

X=XP (X is the matrix of transformed points)
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Theorem:
If X is a matrix such that its columns have zero mean and if X = X P then the
columns of X will also have zero mean.
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Theorem:

If X is a matrix such that its columns have zero mean and if X = X P then the
columns of X will also have zero mean.

Proof: For any matrix A, 17 A gives us a row vector with the i*" element
containing the sum of the i* column of A. (this is easy to see using the
row-column picture of matrix multiplication).
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Theorem:
If X is a matrix such that its columns have zero mean and if X = X P then the
columns of X will also have zero mean.
Proof: For any matrix A, 17 A gives us a row vector with the i*" element
containing the sum of the i* column of A. (this is easy to see using the
row-column picture of matrix multiplication).
Consider

17X =1T7xpP=01"TXx)P

But 17X is the row vector containing the sums of the columns of X. Thus
17X = 0. Therefore, 17X = 0.
Hence the transformed matrix also has columns with sum = 0.
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Theorem:
If X is a matrix such that its columns have zero mean and if X = X P then the
columns of X will also have zero mean.
Proof: For any matrix A, 17 A gives us a row vector with the i*" element
containing the sum of the i* column of A. (this is easy to see using the
row-column picture of matrix multiplication).
Consider

17X =1T7xpP=01"TXx)P

But 17X is the row vector containing the sums of the columns of X. Thus
17X = 0. Therefore, 17X = 0.
Hence the transformed matrix also has columns with sum = 0.

Theorem:
XTX is a symmetric matrix.
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Theorem:
If X is a matrix such that its columns have zero mean and if X = X P then the
columns of X will also have zero mean.
Proof: For any matrix A, 17 A gives us a row vector with the i*" element
containing the sum of the i* column of A. (this is easy to see using the
row-column picture of matrix multiplication).
Consider

17X =1T7xpP=01"TXx)P
But 17X is the row vector containing the sums of the columns of X. Thus

17X = 0. Therefore, 17X = 0.
Hence the transformed matrix also has columns with sum = 0.

Theorem:
XTX is a symmetric matrix.
Proof: We can write (X7 X)T = XT(XT)T = xTXx
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Definition:

If X is a matrix whose columns are zero mean then > = %X TX is the covariance
matrix. In other words each entry >;; stores the covariance between columns ¢ and
jof X.

Prof. Mitesh M. Khapra 7015 (Deep Learning Lecture 6



Definition:

If X is a matrix whose columns are zero mean then > = %X TX is the covariance
matrix. In other words each entry >;; stores the covariance between columns ¢ and
jof X.

Explanation: Let C' be the covariance matrix of X. Let y;, ¢ denote the means
of the i*" and j** column of X respectively. Then by definition of covariance, we
can write :

m
Cij = Z sz /M Xk] )

m

- Y XXy (2 i = p = 0)
k:

1 T 1 T
= XX, = —(XTX);
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X=XP

@ Using the previous theorem & definition, we get %f( TX is the covariance matrix of
the transformed data. We can write :
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X=XP

@ Using the previous theorem & definition, we get %f( TX is the covariance matrix of
the transformed data. We can write :

1 A~
Lyrx- L xp)Y"xp
m m
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X=XP

@ Using the previous theorem & definition, we get %f( TX is the covariance matrix of
the transformed data. We can write :

1 oo 1 1 1
—XTX==—(xP)"xpP==—PT'X"XpP=pP" (XTX> P
m m m m
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X=XP

@ Using the previous theorem & definition, we get %f( TX is the covariance matrix of
the transformed data. We can write :

1 oo 1 1 1
—XTX==—(xP)"xpP==—PT'X"XpP=pP" (XTX> P=P'yp
m m m m
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X=XP

@ Using the previous theorem & definition, we get %f( TX is the covariance matrix of
the transformed data. We can write :

1 oo 1 1 1
—XTX==—(xP)"xpP==—PT'X"XpP=pP" (XTX> P=P'yp
m m m m

@ Each cell 4, of the covariance matrix %X T X stores the covariance between columns
i and j of X.
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X=XP

@ Using the previous theorem & definition, we get %f( TX is the covariance matrix of
the transformed data. We can write :

1 oo 1 1 1
—XTX==—(xP)"xpP==—PT'X"XpP=pP" (XTX> P=P'yp
m m m m

@ Each cell 4, of the covariance matrix %X T X stores the covariance between columns
i and j of X.

o Ideally we want,

XTX> =0 1 # j ( covariance = 0)

( XTX> £0 1 = j ( variance # 0)
j
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X=XP

@ Using the previous theorem & definition, we get %f( TX is the covariance matrix of
the transformed data. We can write :
L org 1 T I orer (1 or T
—X'X=—(XP) XP=—P' X' XP=P'|—X'X)|P=P %P
m m m m
@ Each cell 4, of the covariance matrix %X T X stores the covariance between columns
i and j of X.

o Ideally we want,

1 ~mon
(XTX> =0 1 # j ( covariance = 0)
m i
1 ~mon
(XTX> £0 1 = j ( variance # 0)
m .
ij
In other Wi)I‘dS, we want
—XTX=pP'sP=D [ where D is a diagonal matrix ]
m
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o We want,

P'ypP=D




o We want,
P'ypP=D

e But ¥ is a square matrix and P is an orthogonal matrix
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o We want,
P'ypP=D

e But ¥ is a square matrix and P is an orthogonal matrix

@ Which orthogonal matrix satisfies the following condition?
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o We want,
P'ypP=D

e But ¥ is a square matrix and P is an orthogonal matrix

@ Which orthogonal matrix satisfies the following condition?

P'sP=D
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o We want,
P'ypP=D

(]

But ¥ is a square matrix and P is an orthogonal matrix

(]

Which orthogonal matrix satisfies the following condition?

P'sP=D

o In other words, which orthogonal matrix P diagonalizes 37
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o We want,
P'ypP=D

(]

But ¥ is a square matrix and P is an orthogonal matrix

(]

Which orthogonal matrix satisfies the following condition?
PT'YP=D

o In other words, which orthogonal matrix P diagonalizes 37

o Answer: A matrix P whose columns are the eigen vectors of ¥ = X7 X [By
Eigen Value Decomposition]
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o We want,
P'ypP=D

(]

But ¥ is a square matrix and P is an orthogonal matrix

(]

Which orthogonal matrix satisfies the following condition?
PT'YP=D

o In other words, which orthogonal matrix P diagonalizes 37

o Answer: A matrix P whose columns are the eigen vectors of ¥ = X7 X [By
Eigen Value Decomposition]

Thus, the new basis P used to transform X is the basis consisting of the eigen
vectors of XX
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o Why is this a good basis?
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o Why is this a good basis?

e Because the eigen vectors of X7 X are linearly independent (proof : Slide 19
Theorem 1)
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o Why is this a good basis?

e Because the eigen vectors of X7 X are linearly independent (proof : Slide 19
Theorem 1)

o And because the eigen vectors of X7 X are orthogonal (.- X7 X is symmetric -
saw proof earlier)
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Why is this a good basis?

e Because the eigen vectors of X7 X are linearly independent (proof : Slide 19
Theorem 1)

o And because the eigen vectors of X7 X are orthogonal (.- X7 X is symmetric -

saw proof earlier)

This method is called Principal Component Analysis for transforming the data
to a new basis where the dimensions are non-redundant (low covariance) & not

noisy (high variance)
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Why is this a good basis?

Because the eigen vectors of X7 X are linearly independent (proof : Slide 19
Theorem 1)

And because the eigen vectors of X7 X are orthogonal (.- X7 X is symmetric -
saw proof earlier)

This method is called Principal Component Analysis for transforming the data
to a new basis where the dimensions are non-redundant (low covariance) & not
noisy (high variance)

In practice, we select only the top-k dimensions along which the variance is

high (this will become more clear when we look at an alternalte interpretation
of PCA)
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Module 6.5 : PCA : Interpretation 2
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Given n orthogonal linearly independent vectors P = p1,pa, -+ ,pp We can
represent z; exactly as a linear combination of these vectors.
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Given n orthogonal linearly independent vectors P = p1,pa, -+ ,pp We can
represent z; exactly as a linear combination of these vectors.

n
T = Z a;jp; [we know how to estimate a;js but we will come back to that later]
j=1
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Given n orthogonal linearly independent vectors P = p1,pa, -+ ,pp We can
represent z; exactly as a linear combination of these vectors.

n
T = Z a;jp; [we know how to estimate a;js but we will come back to that later]

Jj=1

But we are interested only in the top-k dimensions (we want to get rid of noisy &
redundant dimensions)
k
& = Z QikPk
=1
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Given n orthogonal linearly independent vectors P = p1,pa, -+ ,pp We can
represent z; exactly as a linear combination of these vectors.

n
T = Z a;jp; [we know how to estimate a;js but we will come back to that later]

Jj=1

But we are interested only in the top-k dimensions (we want to get rid of noisy &
redundant dimensions)
k
& = Z QikPk
=1

We want to select ps such that we minimise the reconstructed error
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=1

<.

m n k

= Z Q;jpj — Z QijPj
j=1

i=1 \j=1
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m

e=Y (zi— )" (i — )

i=1

m 2

=2 E:%PJ Z%Pﬂ

=1

2 T

m n m n n
=SS0 aup | =D D aups > aip;
i=1 \j—kt1 i=1 \j=kt1 j=kt1
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i=1

m 2

=2 E:%PJ Z%%

=1

2 T

m n m n n
=SS0 aup | =D D aups > aip;
i=1 \j—kt1 i=1 \j=kt1 j=kt1

m
T
=) (Cikr1Prs1 + Qigg2Dit2 + -+ Cinpn)’ (Qiks1Prst + QigsaDh2 + -+ Cinpn)
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i=1

m 2
=2 E:%PJ Z%%

=1

2 T

m n m n n
=SS0 aup | =D D aups > aip;
i=1 \j—kt1 i=1 \j=kt1 j=kt1

T
(0 kot 1Pk41 + Qi pg2Pht2 + - o+ QinDn)” (G pr1Pk+1 + Qi fr2Dky2 + - - + Qi nDn)

I
Ms

1=1
m m

— T

S 3D SENTITIED I DI DI T
i=1 j=k+1 i=1 j=k+1 L=k+1,L#k
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i=1
. 2

E QijDj — ZO‘MPJ
i=1

2 T

m n m n n
S aumi | =D | D aup; > aip;
i=1 \j=k+1 i=1 \j=k+1 j=k+1

T
(0 kot 1Pk41 + Qi pg2Pht2 + - o+ QinDn)” (G pr1Pk+1 + Qi fr2Dky2 + - - + Qi nDn)

Ms

1=1

m m

YD SRTTITIED S DR DRI e
i=1 j=k+1 i=1 j=k+1 L=k+1,L#k

m

> Z o Copipj=1pip;=0 Vi#))
i=1 j=k+1
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i=1
m n k 2
=2 | D upi = D aup;
i=1 \j=1 j=1
2 T
m n m n n
=2 | 2 awws | =2 D | | D aum
i=1 \j=k+1 i=1 \j—k+1 j=k+1
m
T
=) (Cikr1Prs1 + Qigg2Dit2 + -+ Cinpn)’ (Qiks1Prst + QigsaDh2 + -+ Cinpn)
1=1
m n m n n
_ TS T )
- Qijp; P + QijPj PLOGL
i=1 j=k+1 i=1 j=k+1 L=k+1,L#£k
m n
2 P _ T _ ; .
=3 > ol (opjpj=Lp;pj =0 Vi#j)
=1 jkt1
m n 9
_ T, .
=2 > (afp))
i=1 j=k+1
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We want to minimize e

n
min Z p;fmepj s.t. pfpjzl Vi=k+1,k+2,---,n
Pk+4+1,Pk42,""" sPn =kl
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We want to minimize e

n
min Z p;fmepj s.t. pfpjzl Vi=k+1,k+2,---,n
Pk+1,Pk+2,""" Pn |
Jj=k+1
The solution to the above problem is given by the eigen vectors corresponding to
the smallest eigen values of C' (Proof : refer Slide 26).
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We want to minimize e

n
min Z p;fmepj s.t. pfpjzl Vi=k+1,k+2,---,n
Pk+1,Pk+2,""" Pn |
Jj=k+1
The solution to the above problem is given by the eigen vectors corresponding to
the smallest eigen values of C' (Proof : refer Slide 26).

Thus we select P = p1,pa,--- ,pn as eigen vectors of C' and retain only top-k eigen
vectors to express the data [or discard the eigen vectors k +1,- - ,n]
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Key Idea
Minimize the error in reconstructing x; after projecting the data on to a new basis.J
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Let’s look at the ‘Reconstruction Error’ in the context of our toy example
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o u; = [1,1] and ug = [—1,1] are the
new basis vectors
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s

) & g

e u; = [1,1] and up = [—1,1] are the
new basis vectors
@ Let us convert them to unit vectors

B U U B = R
Rl R IR e Rl RO RV
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e Consider the point x = [3.3,3] in the
original data

s

) & g

o u; = [1,1] and ug = [—1,1] are the
new basis vectors

@ Let us convert them to unit vectors
1 1 -1 1
w=|% v ew=|% %
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e Consider the point x = [3.3,3] in the
original data
- o oy = x"u; =6.3/V/2
__.’.-'.”"‘ as = 2Tuy = —0.3//2
u2 AUy
x

o u; = [1,1] and ug = [—1,1] are the
new basis vectors

@ Let us convert them to unit vectors
1

1
w=lv BlYn=|n v
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) & g

o u; = [1,1] and ug = [—1,1] are the
new basis vectors

@ Let us convert them to unit vectors
1

w=|% ) &w=|F %

Prof. Mitesh M. Khapra

e Consider the point x = [3.3,3] in the
original data

oo ==z u1—63/\f
as = 2Tuy = —0.3//2

e the perfect reconstruction of x is
given by (using n = 2 dimensions)

T = iUl + aouy = [3.3 3]
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e Consider the point x = [3.3,3] in the

original data
- e ;== u1—63/\[
'__.’.-'.”"f:- as = 2Tuy = —0.3//2
‘_-,.~,""-'":( e the perfect reconstruction of x is
.;_;-_éf-"' given by (using n = 2 dimensions)
u2 U T = a1ul + agug = [33 3]
x

e But we are going to reconstruct it
using fewer (only £ = 1 < n
dimensions, ignoring the low variance
ug dimension)

o u; = [1,1] and ug = [—1,1] are the
new basis vectors

@ Let us convert them to unit vectors
ui =L L] gus= [% %] & =aqu = [3.15 3.15]

(reconstruction with minimum error)
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Recap

o The eigen vectors of a matrix with distinct eigenvalues are linearly independent
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Recap
o The eigen vectors of a matrix with distinct eigenvalues are linearly independent
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o The eigen vectors of a matrix with distinct eigenvalues are linearly independent
o The eigen vectors of a square symmetric matrix are orthogonal

o PCA exploits this fact by representing the data using a new basis comprising
only the top-k eigen vectors
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Recap
o The eigen vectors of a matrix with distinct eigenvalues are linearly independent
o The eigen vectors of a square symmetric matrix are orthogonal

o PCA exploits this fact by representing the data using a new basis comprising
only the top-k eigen vectors

o The n — k dimensions which contribute very little to the reconstruction error
are discarded
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Recap
o The eigen vectors of a matrix with distinct eigenvalues are linearly independent
o The eigen vectors of a square symmetric matrix are orthogonal

o PCA exploits this fact by representing the data using a new basis comprising
only the top-k eigen vectors

o The n — k dimensions which contribute very little to the reconstruction error
are discarded

o These are also the directions along which the variance is minimum
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Module 6.6 : PCA : Interpretation 3
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o We started off with the following wishlist
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@ So far we have paid a lot of attention to the covariance

Prof. Mitesh M. Khapr

7015 (Deep Learning Lecture 6



o We started off with the following wishlist

o We are interested in representing the data using fewer dimensions such that
o the dimensions have low covariance
e the dimensions have high variance

@ So far we have paid a lot of attention to the covariance

o It has indeed played a central role in all our analysis
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We started off with the following wishlist

@ We are interested in representing the data using fewer dimensions such that

e the dimensions have low covariance
e the dimensions have high variance

@ So far we have paid a lot of attention to the covariance
o It has indeed played a central role in all our analysis

e But what about variance? Have we achieved our stated goal of high variance
along dimensions?
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We started off with the following wishlist

@ We are interested in representing the data using fewer dimensions such that

e the dimensions have low covariance
e the dimensions have high variance

@ So far we have paid a lot of attention to the covariance
o It has indeed played a central role in all our analysis

e But what about variance? Have we achieved our stated goal of high variance
along dimensions?

o To answer this question we will see yet another interpretation of PCA
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The " dimension of the transformed data X is given by

Xi = Xpi
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The " dimension of the transformed data X is given by
X; = Xp;

The variance along this dimension is given by
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The " dimension of the transformed data X is given by

Xi = Xp;i
The variance along this dimension is given by
Xrx;, 1
= —pl XTXp;
m m ——
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The " dimension of the transformed data X is given by

Xi = Xp;
The variance along this dimension is given by
Xrx;, 1
v v 7pZT XTX])Z
m m ——
1
= *p?)\ipi [." pi is the eigen vector of XTX]
m
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The " dimension of the transformed data X is given by
X; = Xp;
The variance along this dimension is given by
Xrx;, 1
= = —pl XT X
m ——

1
= *p?)\ipi [." pi is the eigen vector of XTX]
m

1
= —\iplpi
m

m

=1
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The " dimension of the transformed data X is given by

X; = Xp;
The variance along this dimension is given by
Xrx;, 1
—— = —p/ X" Xp,
m m ——
1
= *p?)\ipi [." pi is the eigen vector of XTX]
m
1
= —\ip] pi
m
=1
m
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The " dimension of the transformed data X is given by

X; = Xp;
The variance along this dimension is given by
Xrx;, 1
—— = —p/ X" Xp,
m m ——
1
= *p?)\ipi [." pi is the eigen vector of XTX]
m
1
= —\ip] pi
m
=1
m

o Thus the variance along the i*" dimension (i** eigen vector of XTX) is given
by the corresponding (scaled) eigen value.
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The " dimension of the transformed data X is given by

X; = Xp;
The variance along this dimension is given by
Xrx;, 1
—— = —p/ X" Xp,
m m ——
1
= *p?)\ipi [." pi is the eigen vector of XTX]
m
1
= —\ip] pi
m
=1
_ A
m

o Thus the variance along the i*" dimension (i** eigen vector of XTX) is given
by the corresponding (scaled) eigen value.

e Hence, we did the right thing by discarding the dimensions (eigenvectors)
corresponding to lower eigen values!
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A Quick Summary
We have seen 3 different interpretations of PCA
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A Quick Summary
We have seen 3 different interpretations of PCA
o It ensures that the covariance between the new dimensions is minimized

o It picks up dimensions such that the data exhibits a high variance across these
dimensions
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A Quick Summary
We have seen 3 different interpretations of PCA
o It ensures that the covariance between the new dimensions is minimized

o It picks up dimensions such that the data exhibits a high variance across these
dimensions

o It ensures that the data can be represented using less number of dimensions
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Module 6.7 : PCA : Practical Example
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o Consider we are given a large number of
images of human faces (say, m images)
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o Consider we are given a large number of
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e Each image is 100 x 100 [10K dimensions|
o We would like to represent and store the

images using much fewer dimensions (around
50-200)

e We construct a matrix X € Rm*10K
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o Consider we are given a large number of
images of human faces (say, m images)

Each image is 100 x 100 [10K dimensions]

o We would like to represent and store the

images using much fewer dimensions (around
50-200)

We construct a matrix X €

RleOK

Each row of the matrix corresponds to 1 image
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Consider we are given a large number of
images of human faces (say, m images)

Each image is 100 x 100 [10K dimensions]
We would like to represent and store the

images using much fewer dimensions (around

50-200)
We construct a matrix X € R7™*10K
Each row of the matrix corresponds to 1 image

Fach image is represented wusing 10K
dimensions

ning) : Lecture 6



o X € R™ 10K (a5 explained on the previous
slide)
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o X € R™ 10K (a5 explained on the previous
slide)
o We retain the top 100 dimensions

corresponding to the top 100 eigen vectors of
XX
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o X € R™ 10K (a5 explained on the previous
slide)

o We retain the top 100 dimensions
corresponding to the top 100 eigen vectors of
XTX

o Note that X7 X is a n x n matrix so its eigen
vectors will be n dimensional (n = 10K in this
case)
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o X € R™ 10K (a5 explained on the previous
slide)

o We retain the top 100 dimensions
corresponding to the top 100 eigen vectors of
XTX

o Note that X7 X is a n x n matrix so its eigen
vectors will be n dimensional (n = 10K in this
case)

@ We can convert each eigen vector into a 100 x
100 matrix and treat it as an image
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Prof. Mitesh M. Khapra

X € R™*10K (a5 explained on the previous
slide)
We retain the top 100 dimensions
corresponding to the top 100 eigen vectors of
XTX
Note that X7 X is a n x n matrix so its eigen
vectors will be n dimensional (n = 10K in this
case)

We can convert each eigen vector into a 100 x
100 matrix and treat it as an image

Let’s see what we get
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Prof. Mitesh M. Khapra

X € R™*I0K (a5 explained on the previous
slide)

We retain the top 100 dimensions
corresponding to the top 100 eigen vectors of
XTx

Note that X7 X is a n x n matrix so its eigen
vectors will be n dimensional (n = 10K in this
case)

We can convert each eigen vector into a 100 x
100 matrix and treat it as an image

Let’s see what we get

What we have plotted here are the first 16
eigen vectors of X7 X (basically, treating each

10K dimensional eigen vector as a 100 x 100
dimensional image)
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o These images are called eigenfaces
and form a basis for representing any
face in our database
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o These images are called eigenfaces
and form a basis for representing any
face in our database

@ In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces
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and form a basis for representing any
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o These images are called eigenfaces
and form a basis for representing any
face in our database

o In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

o In practice, we just need to store
P1,D2, -+ , Pk (one time storage)
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o These images are called eigenfaces
and form a basis for representing any
face in our database

o In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

o In practice, we just need to store
P1,D2, -+ , Pk (one time storage)

o Then for each image ¢ we just
need to store the scalar values
1, Q2,0 Qi
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o These images are called eigenfaces
and form a basis for representing any
face in our database

o In other words, we can now represent
a given image (face) as a linear
combination of these eigen faces

o In practice, we just need to store
P1,D2, -+ , Pk (one time storage)

o Then for each image ¢ we just
need to store the scalar values
1, 042,05 Qi

o This significantly reduces the storage
cost without much loss in image
quality
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Module 6.8 : Singular Value Decomposition
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Let us get some more perspective on eigen vectors before moving ahead
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o Let wy,vg,---,v, be the eigen vectors of A and let Ay, Ag,---, A, be
corresponding eigen values

A’U1 = )\11)1, AUQ = )\2’1)2, cee ,Avn = )\nvn
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o Let wy,vg,---,v, be the eigen vectors of A and let Ay, Ag,---, A, be
corresponding eigen values

A’U1 = )\11)1, AUQ = )\2’1)2, cee ,Avn = )\nvn

o If a vector x in R™ is represented using v1, v, -+ , v, as basis then

n
Tr = E ;U5
=1
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o Let wy,vg,---,v, be the eigen vectors of A and let Ay, Ag,---, A, be
corresponding eigen values

A’U1 = )\11)1, AUQ = )\2’1)2, cee ,Avn = )\nvn

o If a vector x in R™ is represented using v1, v, -+ , v, as basis then

n
Tr = E ;U5
=1

n n
NOW, Ax = Z OLI'AUi = Z Oéz‘>\z"U@'

i=1 i=1
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o Let wy,vg,---,v, be the eigen vectors of A and let Ay, Ag,---, A, be
corresponding eigen values

A’U1 = )\11)1, AUQ = )\2’1)2, cee ,Avn = )\nvn

o If a vector x in R™ is represented using v1, v, -+ , v, as basis then

n
Tr = E ;U5
=1

n n
NOW, Ax = Z OZZ'AUi = Z Oéi)\i’[)i

i=1 i=1

o The matrix multiplication reduces to a scalar multiplication if the eigen vectors
of A are used as a basis.
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@ So far all the discussion was centered around square matrices (A € R™*")
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@ So far all the discussion was centered around square matrices (A € R™*")

o What about rectangular matrices A € R™*"? Can they have eigen vectors?
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@ So far all the discussion was centered around square matrices (A € R™*")
o What about rectangular matrices A € R™*"? Can they have eigen vectors?

o Is it possible to have A, xnTnx1 = Tnx1?
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@ So far all the discussion was centered around square matrices (A € R™*")
o What about rectangular matrices A € R™*"? Can they have eigen vectors?

o Is it possible to have A, xnTnx1 = Tnx1? Not possible !
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@ So far all the discussion was centered around square matrices (A € R™*")
o What about rectangular matrices A € R™*"? Can they have eigen vectors?
°

Is it possible to have A, xnTnx1 = Tnx1! Not possible !

The result of A,,xnTnx1 is a vector belonging to R™ (whereas x € R")
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@ So far all the discussion was centered around square matrices (A € R™*")
o What about rectangular matrices A € R™*"? Can they have eigen vectors?
o Is it possible to have A, xnTnx1 = Tnx1? Not possible !

@ The result of A,,xnxnx1 is a vector belonging to R™ (whereas x € R")

@ So do we miss out on the advantage that a basis of eigen vectors provides
for square matrices (i.e.  converting matrix multiplications into scalar
multiplications)?
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@ So far all the discussion was centered around square matrices (A € R™*")
o What about rectangular matrices A € R™*"? Can they have eigen vectors?
o Is it possible to have A, xnTnx1 = Tnx1? Not possible !

@ The result of A,,xnxnx1 is a vector belonging to R™ (whereas x € R")

@ So do we miss out on the advantage that a basis of eigen vectors provides
for square matrices (i.e.  converting matrix multiplications into scalar
multiplications)?

We will see the answer to this question over the next few slides
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@ Note that matrix A,,x, provides a transformation R® — R™
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@ Note that matrix A,,x, provides a transformation R® — R™

@ What if we could have pairs of vectors (vi,u1), (v, ua),- -+, (vg,ux) such that v; € R™
u; € R™ and A’Ui = 0;U;

3S7015 (Deep Learnin, Lecture 6



@ Note that matrix A,,x, provides a transformation R® — R™

@ What if we could have pairs of vectors (vi,u1), (v, ua),- -+, (vg,ux) such that v; € R™
u; € R™ and A’Ui = 0;U;

@ Further let’s assume that vy, ,vg, -+ , v, are orthogonal & thus form a basis V' in R™
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Note that matrix A,,x, provides a transformation R™ — R™

@ What if we could have pairs of vectors (vi,u1), (v, ua),- -+, (vg,ux) such that v; € R™
u; € R™ and A’Ui = 0;U;

Further let’s assume that vy, -, v, -+ , v, are orthogonal & thus form a basis V' in R™

Similarly let’s assume that uy,--- ,ug, - , U, are orthogonal & thus form a basis U in R™
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Note that matrix A,,x, provides a transformation R™ — R™

What if we could have pairs of vectors (vi,u1), (v2,ua), -, (vg, ur) such that v; € R™,
u; € R™ and Av; = o;u;

Further let’s assume that vy, -, v, -+ , v, are orthogonal & thus form a basis V' in R™
Similarly let’s assume that uy,--- ,ug, - , U, are orthogonal & thus form a basis U in R™

Now what if every vector x € R™ is represented using the basis V'

Prof. Mitesh M. Khapra )15 (Deep Learning) : Lecture 6



Note that matrix A,,x, provides a transformation R™ — R™

What if we could have pairs of vectors (vi,u1), (v2,ua), -, (vg, ur) such that v; € R™,
u; € R™ and A’Ui = 0;U;

Further let’s assume that vy, -, v, -+ , v, are orthogonal & thus form a basis V' in R™
Similarly let’s assume that uy,--- ,ug, - , U, are orthogonal & thus form a basis U in R™

Now what if every vector x € R™ is represented using the basis V'

k
T = Z ;0; [note we are using k instead of n ; will clarify this in a minute]
=1
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Note that matrix A,,x, provides a transformation R™ — R™

What if we could have pairs of vectors (vi,u1), (v2,ua), -, (vg, ur) such that v; € R™,
u; € R™ and A’Ui = 0;U;

Further let’s assume that vy, -, v, -+ , v, are orthogonal & thus form a basis V' in R™
Similarly let’s assume that uy,--- ,ug, - , U, are orthogonal & thus form a basis U in R™

Now what if every vector x € R™ is represented using the basis V'

k
T = Z ;0; [note we are using k instead of n ; will clarify this in a minute]
=1

k
Ax = Z a; Av;
i=1
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Note that matrix A,,x, provides a transformation R™ — R™

What if we could have pairs of vectors (vi,u1), (v2,ua), -, (vg, ur) such that v; € R™,
u; € R™ and Av; = o;u;

Further let’s assume that vy, -, v, -+ , v, are orthogonal & thus form a basis V' in R™
Similarly let’s assume that uy,--- ,ug, - , U, are orthogonal & thus form a basis U in R™

Now what if every vector x € R™ is represented using the basis V'

k
T = Z ;0; [note we are using k instead of n ; will clarify this in a minute]
=1

k
Ax = Z a; Av;
i=1

k
= E Q0 U
i=1
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Note that matrix A,,x, provides a transformation R™ — R™

@ What if we could have pairs of vectors (vi,u1), (v, ua),- -+, (vg,ux) such that v; € R™
u; € R™ and A’Ui = 0;U;

Further let’s assume that vy, -, v, -+ , v, are orthogonal & thus form a basis V' in R™

Similarly let’s assume that uy,--- ,ug, - , U, are orthogonal & thus form a basis U in R™

@ Now what if every vector © € R™ is represented using the basis V'

k
T = Z ;0; [note we are using k instead of n ; will clarify this in a minute]
=1

k
Ax = Z a; Av;
i=1

k
= E Q0 U
i=1

@ Once again the matrix multiplication reduces to a scalar multiplication
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Let’s look at a geometric interpretation of this
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dim=k=rank(A)
dim=k=rank(A)
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dim=k=rank(A)
dim=k=rank(A)

@ R™ - Space of all vectors which can multiply with A to give Az [ this is the space of
inputs of the function)]
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dim=k=rank(A)
dim=k=rank(A)

@ R™ - Space of all vectors which can multiply with A to give Az [ this is the space of
inputs of the function)]

@ R™ - Space of all vectors which are outputs of the function Az
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dim=k=rank(A)
dim=k=rank(A)

@ R™ - Space of all vectors which can multiply with A to give Az [ this is the space of
inputs of the function)]

@ R™ - Space of all vectors which are outputs of the function Az

@ We are interested in finding a basis U, V such that
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dim=k=rank(A)
dim=k=rank(A)

@ R™ - Space of all vectors which can multiply with A to give Az [ this is the space of
inputs of the function)]

@ R™ - Space of all vectors which are outputs of the function Az

@ We are interested in finding a basis U, V such that

o V - basis for inputs
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dim=k=rank(A)
dim=k=rank(A)

@ R™ - Space of all vectors which can multiply with A to give Az [ this is the space of
inputs of the function)]

@ R™ - Space of all vectors which are outputs of the function Az

@ We are interested in finding a basis U, V such that

o V - basis for inputs
o U - basis for outputs
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dim=k=rank(A)
dim=k=rank(A)

@ R™ - Space of all vectors which can multiply with A to give Az [ this is the space of
inputs of the function)]

@ R™ - Space of all vectors which are outputs of the function Az

@ We are interested in finding a basis U, V such that

o V - basis for inputs
o U - basis for outputs

@ such that if the inputs and outputs are represented using this basis then the operation
Azx reduces to a scalar operation
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o What do we mean by saying that dimension of rowspace is k7 If z € R" then
why is the dimension not n.
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o What do we mean by saying that dimension of rowspace is k7 If z € R" then
why is the dimension not n.
o It means that of all the possible vectors in R™ only a subspace of vectors lying

in R* can act as inputs to Az and produce a non-zero output. The remaining
vectors in R"* will produce a zero output
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o What do we mean by saying that dimension of rowspace is k7 If z € R" then
why is the dimension not n.

o It means that of all the possible vectors in R™ only a subspace of vectors lying
in R* can act as inputs to Az and produce a non-zero output. The remaining
vectors in R"* will produce a zero output

o Hence we need only k£ dimensions to represent x

k
xTr = E (07X ¥4
=1
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o Let’s look at a way of writing this as a matrix operation
Avy = oyuy, Avy = ogug, -+ -, Avg = ojuy,

Aanank = Umxk Ekxk
~——

diagonal matrix
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o Let’s look at a way of writing this as a matrix operation
Avy = oyuy, Avy = ogug, -+ -, Avg = ojuy,

Aanank = Unmxk Dkxk
——
diagonal matrix

o If we have k orthogonal vectors (V,xk) then using Gram Schmidt
orthogonalization, we can find n — k more orthogonal vectors to complete the
basis for R” [We can do the same for U]

AanVan = meEan

vtav=x [Uvt=v0"] A=vuxv? |[v1=VT]
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o Let’s look at a way of writing this as a matrix operation
Avy = oyuy, Avy = ogug, -+ -, Avg = ojuy,

Aanank = Unmxk Dkxk
——
diagonal matrix

o If we have k orthogonal vectors (V,xk) then using Gram Schmidt
orthogonalization, we can find n — k more orthogonal vectors to complete the
basis for R” [We can do the same for U]

AanVan = meEan
vtav=x [Uvt=v0"] A=vuxv? |[v1=VT]

@ X is a diagonal matrix with only the first k£ diagonal elements as non-zero
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o Let’s look at a way of writing this as a matrix operation
Avy = oyuy, Avy = ogug, -+ -, Avg = ojuy,

Aanank = Um><k Ekxk
~——

diagonal matrix

o If we have k orthogonal vectors (V,xk) then using Gram Schmidt
orthogonalization, we can find n — k more orthogonal vectors to complete the
basis for R” [We can do the same for U]

AanVan = UnxmXmxn
vtav=x [Uvt=v0"] A=vuxv? |[v1=VT]
@ X is a diagonal matrix with only the first k£ diagonal elements as non-zero
o Now the question is how do we find V, U and X
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@ Suppose V, U and ¥ exist, then
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@ Suppose V, U and ¥ exist, then

ATA = wxvhHT(uzvT)
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@ Suppose V, U and ¥ exist, then

ATA = wxvhHT(uzvT)
=vxTuTusv?
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@ Suppose V, U and ¥ exist, then
ATA = wxvhHT(uzvT)
=vxtutusv?
ATA=vy2y?T
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@ Suppose V, U and ¥ exist, then
ATA = wxvhHT(uzvT)
=vxtutusv?
ATA=vy2y?T

e What does this look like?
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@ Suppose V, U and ¥ exist, then
ATA = wxvhHT(uzvT)
=vxtutusv?
ATA=vy2y?T

e What does this look like? Eigen Value decomposition of A7 A
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@ Suppose V, U and ¥ exist, then
ATA = wxvhHT(uzvT)
=vetutusv?
ATA=vy2yT
e What does this look like? Eigen Value decomposition of A7 A

o Similarly we can show that

AAT = Ux?UuT
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Suppose V, U and ¥ exist, then
ATA = wxvhHT(uzvT)
=vxtutusv?
ATA=vy2y?T

What does this look like? Eigen Value decomposition of AT A

Similarly we can show that

AAT = Ux?UuT

e Thus U and V are the eigen vectors of AAT and AT A respectively and ¥2 = A
where A is the diagonal matrix containing eigen values of AT A
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T T o1 — v —

A ul ... uk
bl Tkl s L Uk 7k
mxk

k
= E Uiui'UiT
i=1

mxn
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T T o1 — v —

A Uy -+ Uk
bl Tkl s L Uk 7k
mxk

k
= E Uiuiv;f
1=1

mxn

Theorem:
Ululvf is the best rank-1 approximation of the matrix A. 21221 aiuiv;‘r is the best
rank-2 approximation of matrix A. In general, Zle aiuiviT is the best rank-k
approximation of matrix A. In other words, the solution to

min ||A — B||% is given by :

B :kaEthkT; (minimizes reconstruction error of A)
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o; = v/ \; = singular value of A
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o; = v/ \; = singular value of A

U = left singular matrix of A
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o; = v/ \; = singular value of A
U = left singular matrix of A

V' = right singular matrix of A
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