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Module 6.1 : Eigenvalues and Eigenvectors
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A =

[
1 2
2 1

]

Ax =

[
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5

]

What happens when a matrix hits a
vector?

The vector gets transformed into a
new vector (it strays from its path)

The vector may also get scaled
(elongated or shortened) in the
process.
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2 1

] For a given square matrix A, there
exist special vectors which refuse to
stray from their path.

These vectors are called eigenvectors.

More formally,

Ax = λx [direction remains the same]

The vector will only get scaled but
will not change its direction.
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So what is so special about
eigenvectors?

Why are they always in the limelight?

It turns out that several properties
of matrices can be analyzed based
on their eigenvalues (for example, see
spectral graph theory)

We will now see two cases where
eigenvalues/vectors will help us in
this course
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k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]

=

[
p 1− q

1− p q

] [
k1
k2

]

v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .



5/9

k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]

=

[
p 1− q

1− p q

] [
k1
k2

]

v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .



5/9

k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]

=

[
p 1− q

1− p q

] [
k1
k2

]

v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .



5/9

k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]

=

[
p 1− q

1− p q

] [
k1
k2

]

v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .



5/9

k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]

=

[
p 1− q

1− p q

] [
k1
k2

]
v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .



5/9

k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]
=

[
p 1− q

1− p q

] [
k1
k2

]

v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .



5/9

k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]
=

[
p 1− q

1− p q

] [
k1
k2

]
v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .



5/9

k1

Chinese

k2

Mexican

v(0) =

[
k1
k2

]

v(1) =

[
pk1 + (1− q)k2
(1− p)k1 + qk2

]
=

[
p 1− q

1− p q

] [
k1
k2

]
v(1) = Mv(0)

v(2) = Mv(1)

= M2v(0)

In general, v(n) = Mnv(0)

Let us assume that on day 0, k1 students eat
Chinese food, and k2 students eat Mexican food.
(Of course, no one eats in the mess!)

On each subsequent day i, a fraction p of the
students who ate Chinese food on day (i − 1),
continue to eat Chinese food on day i, and (1− p)
shift to Mexican food.

Similarly a fraction q of students who ate Mexican
food on day (i− 1) continue to eat Mexican food
on day i, and (1− q) shift to Chinese food.

The number of customers in the two restaurants
is thus given by the following series:

v(0),Mv(0),M
2v(0),M

3v(0), . . .



6/9

k1 k2p

1− p

q

1− q



6/9

k1 k2p

1− p

q

1− q

This is a problem for the two restaurant
owners.

The number of patrons is changing constantly.

Or is it? Will the system eventually reach
a steady state? (i.e. will the number
of customers in the two restaurants become
constant over time?)

Turns out they will!

Let’s see how?
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A matrix M is called a stochastic matrix if all the
entries are positive and the sum of the elements in
each column is equal to 1.
(Note that the matrix in our example is a
stochastic matrix)

Theorem

If A is a n × n square matrix with a dominant
eigenvalue, then the sequence of vectors given by
Av0, A

2v0, . . . , A
nv0, . . . approaches a multiple of

the dominant eigenvector of A.
(the theorem is slightly misstated here for ease of
explanation)
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Let ed be the dominant eigenvector of M and
λd = 1 the corresponding dominant eigenvalue

Given the previous definitions and theorems,
what can you say about the sequence
Mv(0),M

2v(0),M
3v(0), . . . ?

There exists an n such that

v(n) = Mnv(0) = ked (some multiple of ed)

Now what happens at time step (n+ 1)?

v(n+1) = Mv(n) = M(ked) = k(Med) = k(λded) = ked

The population in the two restaurants
becomes constant after time step n.
See Proof Here

k1 k2p

1− p

q

1− q

https://www.quora.com/Why-does-repeatedly-multiplying-a-vector-by-a-square-matrix-cause-the-vector-to-converge-on-or-along-the-matrixs-eigenvector
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Now instead of a stochastic matrix let us consider any square matrix A

Let p be the time step at which the sequence x0, Ax0, A
2x0, . . . approaches a

multiple of ed (the dominant eigenvector of A)

Apx0 = ked

Ap+1x0 = A(Apx0) = kAed = kλded

Ap+2x0 = A(Ap+1x0) = kλdAed = kλ2ded

Ap+nx0 = k(λd)ned

In general, if λd is the dominant eigenvalue of a matrix A, what would happen
to the sequence x0, Ax0, A

2x0, . . . if

|λd| > 1

(will explode)

|λd| < 1

(will vanish)

|λd| = 1

(will reach a steady state)

(We will use this in the course at some point)
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