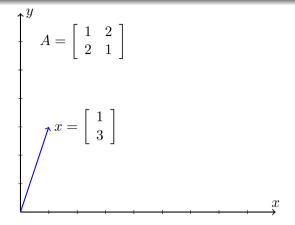
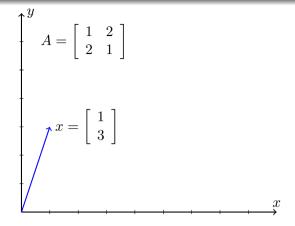
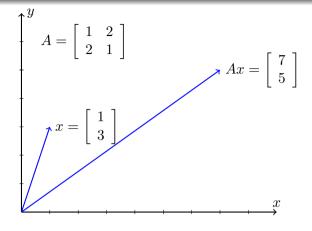
Module 6.1: Eigenvalues and Eigenvectors



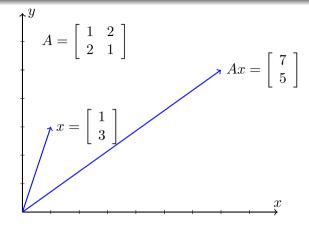
• What happens when a matrix hits a vector?



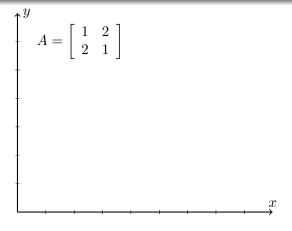
- What happens when a matrix hits a vector?
- The vector gets transformed into a new vector (it strays from its path)



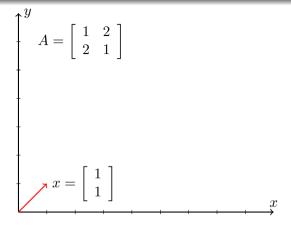
- What happens when a matrix hits a vector?
- $Ax = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$ The vector gets transformed into a new vector (it strays from its path)



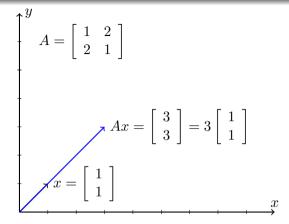
- What happens when a matrix hits a vector?
- The vector gets transformed into a new vector (it strays from its path)
- The vector may also get scaled (elongated or shortened) in the process.



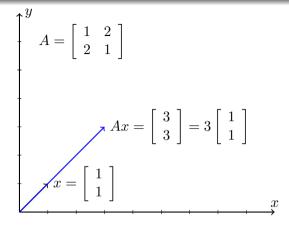
• For a given square matrix A, there exist special vectors which refuse to stray from their path.



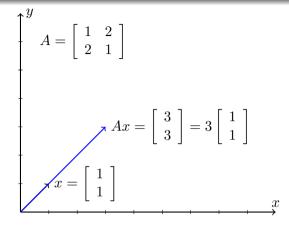
• For a given square matrix A, there exist special vectors which refuse to stray from their path.



• For a given square matrix A, there exist special vectors which refuse to stray from their path.

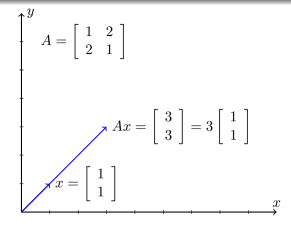


- For a given square matrix A, there exist special vectors which refuse to stray from their path.
- These vectors are called eigenvectors.



- For a given square matrix A, there exist special vectors which refuse to stray from their path.
- These vectors are called eigenvectors.
- More formally,

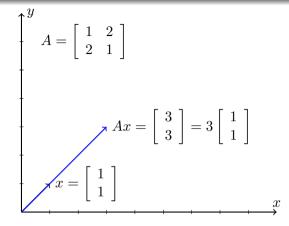
 $Ax = \lambda x$ [direction remains the same]

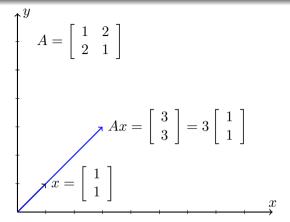


- For a given square matrix A, there exist special vectors which refuse to stray from their path.
- These vectors are called eigenvectors.
- More formally,

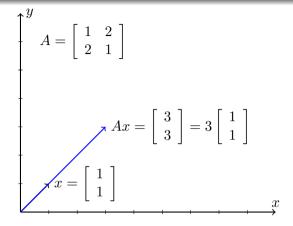
$$Ax = \lambda x$$
 [direction remains the same]

• The vector will only get scaled but will not change its direction.

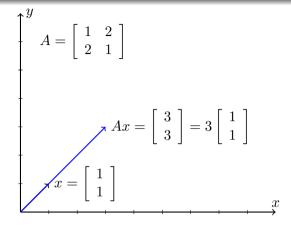




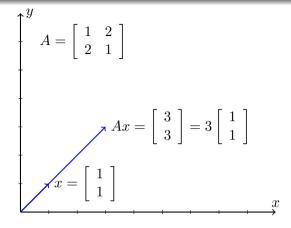
• So what is so special about eigenvectors?



- So what is so special about eigenvectors?
- Why are they always in the limelight?



- So what is so special about eigenvectors?
- Why are they always in the limelight?
- It turns out that several properties of matrices can be analyzed based on their eigenvalues (for example, see spectral graph theory)



- So what is so special about eigenvectors?
- Why are they always in the limelight?
- It turns out that several properties of matrices can be analyzed based on their eigenvalues (for example, see spectral graph theory)
- We will now see two cases where eigenvalues/vectors will help us in this course

• Let us assume that on day 0, k_1 students eat Chinese food, and k_2 students eat Mexican food. (Of course, no one eats in the mess!)

$$\begin{array}{c} \text{Chinese} & \text{Mexican} \\ \hline k_1 & \hline k_2 \end{array}$$

$$v_{(0)} = \left[\begin{array}{c} k_1 \\ k_2 \end{array} \right]$$

• Let us assume that on day 0, k_1 students eat Chinese food, and k_2 students eat Mexican food. (Of course, no one eats in the mess!)

$$\begin{array}{c} \text{Chinese} & \text{Mexican} \\ \hline k_1 & \hline k_2 \end{array}$$

$$v_{(0)} = \left[\begin{array}{c} k_1 \\ k_2 \end{array} \right]$$

- Let us assume that on day 0, k_1 students eat Chinese food, and k_2 students eat Mexican food. (Of course, no one eats in the mess!)
- On each subsequent day i, a fraction p of the students who ate Chinese food on day (i-1), continue to eat Chinese food on day i, and (1-p) shift to Mexican food.

$$\begin{array}{c} \text{Chinese} & \text{Mexican} \\ \hline (k_1) & k_2 \end{array}$$

$$v_{(0)} = \left[\begin{array}{c} k_1 \\ k_2 \end{array} \right]$$

- Let us assume that on day 0, k_1 students eat Chinese food, and k_2 students eat Mexican food. (Of course, no one eats in the mess!)
- On each subsequent day i, a fraction p of the students who ate Chinese food on day (i-1), continue to eat Chinese food on day i, and (1-p) shift to Mexican food.
- Similarly a fraction q of students who ate Mexican food on day (i-1) continue to eat Mexican food on day i, and (1-q) shift to Chinese food.

$$\begin{array}{c} \text{Chinese} & \text{Mexican} \\ \hline k_1 & k_2 \end{array}$$

$$v_{(0)} = \left[\begin{array}{c} k_1 \\ k_2 \end{array} \right]$$

$$v_{(1)} = \begin{bmatrix} pk_1 + (1-q)k_2 \\ (1-p)k_1 + qk_2 \end{bmatrix}$$

- Let us assume that on day 0, k_1 students eat Chinese food, and k_2 students eat Mexican food. (Of course, no one eats in the mess!)
- On each subsequent day i, a fraction p of the students who ate Chinese food on day (i-1), continue to eat Chinese food on day i, and (1-p) shift to Mexican food.
- Similarly a fraction q of students who ate Mexican food on day (i-1) continue to eat Mexican food on day i, and (1-q) shift to Chinese food.

$$\begin{array}{c} \text{Chinese} & \text{Mexican} \\ \hline k_1 & k_2 \end{array}$$

$$v_{(0)} = \left[\begin{array}{c} k_1 \\ k_2 \end{array} \right]$$

$$v_{(1)} = \begin{bmatrix} pk_1 + (1-q)k_2 \\ (1-p)k_1 + qk_2 \end{bmatrix}$$
$$= \begin{bmatrix} p & 1-q \\ 1-p & q \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

- Let us assume that on day 0, k_1 students eat Chinese food, and k_2 students eat Mexican food. (Of course, no one eats in the mess!)
- On each subsequent day i, a fraction p of the students who ate Chinese food on day (i-1), continue to eat Chinese food on day i, and (1-p) shift to Mexican food.
- Similarly a fraction q of students who ate Mexican food on day (i-1) continue to eat Mexican food on day i, and (1-q) shift to Chinese food.

Chinese Mexican
$$v_{(0)} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

$$v_{(1)} = \begin{bmatrix} pk_1 + (1-q)k_2 \\ (1-p)k_1 + qk_2 \end{bmatrix}$$

$$= \begin{bmatrix} p & 1-q \\ 1-p & q \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

 $v_{(1)} = Mv_{(0)}$ $v_{(2)} = Mv_{(1)}$ $= M^2v_{(0)}$

- Let us assume that on day 0, k_1 students eat Chinese food, and k_2 students eat Mexican food. (Of course, no one eats in the mess!)
- On each subsequent day i, a fraction p of the students who ate Chinese food on day (i-1), continue to eat Chinese food on day i, and (1-p) shift to Mexican food.
- Similarly a fraction q of students who ate Mexican food on day (i-1) continue to eat Mexican food on day i, and (1-q) shift to Chinese food.

Chinese Mexican
$$\begin{array}{c}
k_1 \\
\hline
 & k_2
\end{array}$$

$$v_{(0)} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

$$\begin{bmatrix} pk_1 + (1-a)k_2 \end{bmatrix}$$

$$v_{(1)} = \begin{bmatrix} pk_1 + (1-q)k_2 \\ (1-p)k_1 + qk_2 \end{bmatrix}$$
$$= \begin{bmatrix} p & 1-q \\ 1-p & q \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

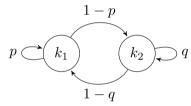
$$v_{(1)} = Mv_{(0)}$$
$$v_{(2)} = Mv_{(1)}$$

$$= M^2 v_{(0)}$$

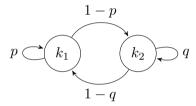
In general, $v_{(n)} = M^n v_{(0)}$

- Let us assume that on day 0, k_1 students eat Chinese food, and k_2 students eat Mexican food. (Of course, no one eats in the mess!)
- On each subsequent day i, a fraction p of the students who ate Chinese food on day (i-1), continue to eat Chinese food on day i, and (1-p) shift to Mexican food.
- Similarly a fraction q of students who ate Mexican food on day (i-1) continue to eat Mexican food on day i, and (1-q) shift to Chinese food.
- The number of customers in the two restaurants is thus given by the following series:

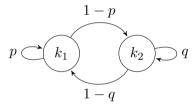
$$v_{(0)}, Mv_{(0)}, M^2v_{(0)}, M^3v_{(0)}, \dots$$

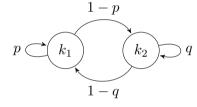


• This is a problem for the two restaurant owners.

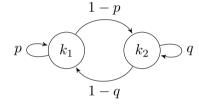


- This is a problem for the two restaurant owners.
- The number of patrons is changing constantly.

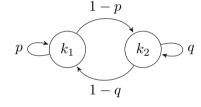




- This is a problem for the two restaurant owners.
- The number of patrons is changing constantly.
- Or is it? Will the system eventually reach a steady state? (i.e. will the number of customers in the two restaurants become constant over time?)



- This is a problem for the two restaurant owners.
- The number of patrons is changing constantly.
- Or is it? Will the system eventually reach a steady state? (i.e. will the number of customers in the two restaurants become constant over time?)
- Turns out they will!



- This is a problem for the two restaurant owners.
- The number of patrons is changing constantly.
- Or is it? Will the system eventually reach a steady state? (i.e. will the number of customers in the two restaurants become constant over time?)
- Turns out they will!
- Let's see how?

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvectors of an $n \times n$ matrix A. λ_1 is called the dominant eigen value of A if

$$|\lambda_1| \ge |\lambda_i| \ i = 2, \dots, n$$

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvectors of an $n \times n$ matrix A. λ_1 is called the dominant eigen value of A if

$$|\lambda_1| \ge |\lambda_i| \ i = 2, \dots, n$$

Definition

A matrix M is called a stochastic matrix if all the entries are positive and the sum of the elements in each column is equal to 1.

(Note that the matrix in our example is a stochastic matrix)

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvectors of an $n \times n$ matrix A. λ_1 is called the dominant eigen value of A if

$$|\lambda_1| \ge |\lambda_i| \ i = 2, \dots, n$$

Theorem

The largest (dominant) eigenvalue of a stochastic matrix is 1.

See proof here

Definition

A matrix M is called a stochastic matrix if all the entries are positive and the sum of the elements in each column is equal to 1.

(Note that the matrix in our example is a stochastic matrix)

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvectors of an $n \times n$ matrix A. λ_1 is called the dominant eigen value of A if

$$|\lambda_1| \ge |\lambda_i| \ i = 2, \dots, n$$

Theorem

The largest (dominant) eigenvalue of a stochastic matrix is 1.

See proof here

Definition

A matrix M is called a stochastic matrix if all the entries are positive and the sum of the elements in each column is equal to 1.

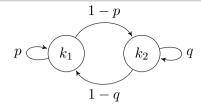
(Note that the matrix in our example is a stochastic matrix)

Theorem

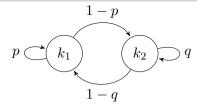
If A is a $n \times n$ square matrix with a dominant eigenvalue, then the sequence of vectors given by $Av_0, A^2v_0, \ldots, A^nv_0, \ldots$ approaches a multiple of the dominant eigenvector of A.

(the theorem is slightly misstated here for ease of explanation)

• Let e_d be the dominant eigenvector of M and $\lambda_d=1$ the corresponding dominant eigenvalue

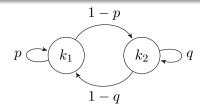


- Let e_d be the dominant eigenvector of M and $\lambda_d=1$ the corresponding dominant eigenvalue
- Given the previous definitions and theorems, what can you say about the sequence $Mv_{(0)}, M^2v_{(0)}, M^3v_{(0)}, \dots$?



- Let e_d be the dominant eigenvector of M and $\lambda_d=1$ the corresponding dominant eigenvalue
- Given the previous definitions and theorems, what can you say about the sequence $Mv_{(0)}, M^2v_{(0)}, M^3v_{(0)}, \dots$?
- There exists an n such that

$$v_{(n)} = M^n v_{(0)} = k e_d$$
 (some multiple of e_d)

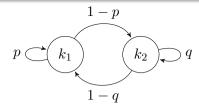


- Let e_d be the dominant eigenvector of M and $\lambda_d=1$ the corresponding dominant eigenvalue
- Given the previous definitions and theorems, what can you say about the sequence $Mv_{(0)}, M^2v_{(0)}, M^3v_{(0)}, \dots$?
- There exists an n such that

$$v_{(n)} = M^n v_{(0)} = k e_d$$
 (some multiple of e_d)

• Now what happens at time step (n+1)?

$$v_{(n+1)} = Mv_{(n)} = M(ke_d) = k(Me_d) = k(\lambda_d e_d) = ke_d$$



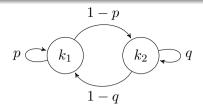
- Let e_d be the dominant eigenvector of M and $\lambda_d = 1$ the corresponding dominant eigenvalue
- Given the previous definitions and theorems, what can you say about the sequence $Mv_{(0)}, M^2v_{(0)}, M^3v_{(0)}, \dots$?
- There exists an n such that

$$v_{(n)} = M^n v_{(0)} = k e_d$$
 (some multiple of e_d)

• Now what happens at time step (n+1)?

$$v_{(n+1)} = Mv_{(n)} = M(ke_d) = k(Me_d) = k(\lambda_d e_d) = ke_d$$

• The population in the two restaurants becomes constant after time step n. See Proof Here



ullet Now instead of a stochastic matrix let us consider any square matrix A

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^p x_0 = k e_d$$

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$
 $A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$
 $A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} =$$

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

• In general, if λ_d is the dominant eigenvalue of a matrix A, what would happen to the sequence $x_0, Ax_0, A^2x_0, \ldots$ if

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

- In general, if λ_d is the dominant eigenvalue of a matrix A, what would happen to the sequence $x_0, Ax_0, A^2x_0, \ldots$ if
 - $|\lambda_d| > 1$

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

- In general, if λ_d is the dominant eigenvalue of a matrix A, what would happen to the sequence $x_0, Ax_0, A^2x_0, \ldots$ if
 - $|\lambda_d| > 1$ (will explode)

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

- In general, if λ_d is the dominant eigenvalue of a matrix A, what would happen to the sequence $x_0, Ax_0, A^2x_0, \ldots$ if
 - $|\lambda_d| > 1$ (will explode)
 - $|\lambda_d| < 1$

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

- In general, if λ_d is the dominant eigenvalue of a matrix A, what would happen to the sequence $x_0, Ax_0, A^2x_0, \ldots$ if
 - $|\lambda_d| > 1$ (will explode)
 - $|\lambda_d| < 1$ (will vanish)

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

- In general, if λ_d is the dominant eigenvalue of a matrix A, what would happen to the sequence $x_0, Ax_0, A^2x_0, \ldots$ if
 - $|\lambda_d| > 1$ (will explode)
 - $|\lambda_d| < 1$ (will vanish)
 - $|\lambda_d| = 1$

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

- In general, if λ_d is the dominant eigenvalue of a matrix A, what would happen to the sequence $x_0, Ax_0, A^2x_0, \ldots$ if
 - $|\lambda_d| > 1$ (will explode)
 - $|\lambda_d| < 1$ (will vanish)
 - $|\lambda_d| = 1$ (will reach a steady state)

- ullet Now instead of a stochastic matrix let us consider any square matrix A
- Let p be the time step at which the sequence $x_0, Ax_0, A^2x_0, \ldots$ approaches a multiple of e_d (the dominant eigenvector of A)

$$A^{p}x_{0} = ke_{d}$$

$$A^{p+1}x_{0} = A(A^{p}x_{0}) = kAe_{d} = k\lambda_{d}e_{d}$$

$$A^{p+2}x_{0} = A(A^{p+1}x_{0}) = k\lambda_{d}Ae_{d} = k\lambda_{d}^{2}e_{d}$$

$$A^{p+n}x_{0} = k(\lambda_{d})^{n}e_{d}$$

- In general, if λ_d is the dominant eigenvalue of a matrix A, what would happen to the sequence $x_0, Ax_0, A^2x_0, \ldots$ if
 - $|\lambda_d| > 1$ (will explode)
 - $|\lambda_d| < 1$ (will vanish)
 - $|\lambda_d| = 1$ (will reach a steady state)
- (We will use this in the course at some point)

