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Module 6.2 : Linear Algebra - Basic Definitions
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We will see some more examples where eigenvectors are important, but before
that let’s revisit some basic definitions from linear algebra.
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Basis

A set of vectors ∈ Rn is called a basis, if they are linearly independent and every
vector ∈ Rn can be expressed as a linear combination of these vectors.
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Basis

A set of vectors ∈ Rn is called a basis, if they are linearly independent and every
vector ∈ Rn can be expressed as a linear combination of these vectors.

Linearly independent vectors

A set of n vectors v1, v2, . . . , vn is linearly independent if no vector in the set can
be expressed as a linear combination of the remaining n− 1 vectors.
In other words, the only solution to

c1v1 + c2v2 + . . . cnvn = 0 is c1 = c2 = · · · = cn = 0(ci’s are scalars)
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x = (1, 0)

y = (0, 1)

For example consider the space R2

Now consider the vectors

x =

[
1
0

]
and y =

[
0
1

]

Any vector

[
a
b

]
∈ R2, can be expressed as a

linear combination of these two vectors i.e[
a
b

]
= a

[
1
0

]
+ b

[
0
1

]
Further, x and y are linearly independent.
(the only solution to c1x + c2y = 0 is c1 =
c2 = 0)
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x = (1, 0)

y = (0, 1)

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R2 as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of x and y.

We could have chosen any 2 linearly
independent vectors in R2 as the basis vectors.

For example, consider the linearly
independent vectors, [2, 3]T and [5, 7]T .
See how any vector [a, b]T ∈ R2 can be
expressed as a linear combination of these
two vectors.

We can find x1 and x2 by solving a system of
linear equations.
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x = (1, 0)

y = (0, 1)

a = 2x1 + 5x2

b = 3x1 + 7x2

In fact, turns out that x and y are unit vectors
in the direction of the co-ordinate axes.

And indeed we are used to representing all
vectors in R2 as a linear combination of these
two vectors.

But there is nothing sacrosanct about the
particular choice of x and y.

We could have chosen any 2 linearly
independent vectors in R2 as the basis vectors.

For example, consider the linearly
independent vectors, [2, 3]T and [5, 7]T .
See how any vector [a, b]T ∈ R2 can be
expressed as a linear combination of these
two vectors.

We can find x1 and x2 by solving a system of
linear equations.



6/9

u1
u2

z =

[
z1
z2

] In general, given a set of linearly independent
vectors u1, u2, . . . un ∈ Rn, we can express any
vector z ∈ Rn as a linear combination of these
vectors.

z = α1u1 + α2u2 + · · ·+ αnun
z1
z2
...
zn

 = α1


u11
u12

...
u1n

+ α2


u21
u22

...
u2n

+ . . .+ αn


un1
un2

...
unn



z1
z2
...
zn

 =


u11 u21 . . . un1
u12 u22 . . . un2

...
...

...
...

u1n u2n . . . unn



α1

α2
...
αn


We can now find the αis using Gaussian
Elimination (Time Complexity: O(n3))
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(Basically rewriting in matrix form)

We can now find the αis using Gaussian
Elimination (Time Complexity: O(n3))
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u1
u2

z =

[
a
b

]

θ
|→ z
|

α1α
2

Now let us see if we have orthonormal basis.

uTi uj = 0 ∀i 6= j and uTi ui = ‖ui‖2 = 1

Again we have:

z = α1u1 + α2u2 + . . .+ αnun

uT1 z = α1u
T
1 u1 + . . .+ αnu

T
1 un

= α1

We can directly find each αi using a dot
product between z and ui (time complexity
O(N))

The total complexity will be O(N2)
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Remember

An orthogonal basis is the most convenient basis that one can hope for.
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But what does any of this have to do with
eigenvectors?

Turns out that the eigenvectors can form a
basis.

In fact, the eigenvectors of a square symmetric
matrix are even more special.

Thus they form a very convenient basis.

Why would we want to use the eigenvectors as
a basis instead of the more natural co-ordinate
axes?

We will answer this question soon.
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Turns out that the eigenvectors can form a
basis.

In fact, the eigenvectors of a square symmetric
matrix are even more special.

Thus they form a very convenient basis.

Why would we want to use the eigenvectors as
a basis instead of the more natural co-ordinate
axes?

We will answer this question soon.
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