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Module 6.3 : Eigenvalue Decomposition
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Before proceeding let’s do a quick recap of eigenvalue decomposition.
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Let u1, u2, . . . , un be the eigenvectors of a matrix A and let λ1, λ2, . . . , λn be
the corresponding eigenvalues.

Consider a matrix U whose columns are u1, u2, . . . , un.
Now

AU = A

x
u1y

x
u2y . . .

x
uny

 =

 x
Au1y

x
Au2y . . .

x
Auny


=

 x
λ1u1y

x
λ2u2y . . .

x
λnuny



=

x
u1y

x
u2y . . .

x
uny



λ1 0 . . . 0

0 λ2
...

...
. . . 0

0 . . . 0 λn

 = UΛ

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of A.
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AU = UΛ
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AU = UΛ

If U−1 exists, then we can write,

A = UΛU−1 [eigenvalue decomposition]

U−1AU = Λ [diagonalization of A]

Under what conditions would U−1 exist?

If the columns of U are linearly independent [See proof here]
i.e. if A has n linearly independent eigenvectors.
i.e. if A has n distinct eigenvalues [sufficient condition, proof : Slide 19
Theorem 1]

https://www.youtube.com/watch?v=mTryd7gPHOQ
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If A is symmetric then the situation is even more convenient.

The eigenvectors are orthogonal [proof : Slide 19 Theorem 2]

Further let’s assume, that the eigenvectors have been normalized [ uTi ui = 1]

Q = UTU =


← u1 →
← u2 →
. . .

← un →


x
u1y

x
u2y . . .

x
uny


Each cell of the matrix, Qij is given by uTi uj

Qij = uTi uj = 0 if i 6= j

= 1 if i = j

∴ UTU = I (the identity matrix)

UT is the inverse of U (very convenient to calculate)
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Something to think about

Given the EVD, A = UΣUT ,
what can you say about the sequence x0, Ax0, A

2x0, . . . in terms of the eigen
values of A.
(Hint: You should arrive at the same conclusion we saw earlier)
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Theorem (one more important property of eigenvectors)

If A is a square symmetric N ×N matrix, then the solution to the following
optimization problem is given by the eigenvector corresponding to the largest
eigenvalue of A.

max
x

xTAx

s.t ‖x‖ = 1

and the solution to
min

x
xTAx

s.t ‖x‖ = 1

is given by the eigenvector corresponding to the smallest eigenvalue of A.
Proof: Next slide.
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This is a constrained optimization problem that can be solved using Lagrange
Multipliers:

L = xTAx− λ(xTx− 1)

∂L

∂x
= 2Ax− λ(2x) = 0 => Ax = λx

Hence x must be an eigenvector of A with eigenvalue λ.

Multiplying by xT :

xTAx = λxTx = λ(since xTx = 1)

Therefore, the critical points of this constrained problem are the eigenvalues of
A.

The maximum value is the largest eigenvalue, while the minimum value is the
smallest eigenvalue.
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The story so far...

The eigenvectors corresponding to different eigenvalues are linearly
independent.

The eigenvectors of a square symmetric matrix are orthogonal.

The eigenvectors of a square symmetric matrix can thus form a convenient basis.

We will put all of this to use.
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