Module 6.3 : Eigenvalue Decomposition



Before proceeding let’s do a quick recap of eigenvalue decomposition.
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@ where A is a diagonal matrix whose diagonal elements are the eigenvalues.of A.
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o If U™! exists, then we can write,

A=UAU"' [eigenvalue decomposition]
U AU = A [diagonalization of A]

e Under what conditions would U~ exist?

o If the columns of U are linearly independent [See proof here]
e i.e. if A has n linearly independent eigenvectors.

o i.e. if A has n distinct eigenvalues [sufficient condition, proof : Slide 19
Theorem 1]
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If A is symmetric then the situation is even more convenient.

The eigenvectors are orthogonal [proof : Slide 19 Theorem 2]

Further let’s assume, that the eigenvectors have been normalized [ ul u; = 1]

— Uy —
Q:UTU: Uz Jl JQ Jn

(]

Each cell of the matrix, );; is given by uiTuj
Qij:u?uj ZOifi%j
=1lifi=j
. UTU =T (the identity matrix)
o UT is the inverse of U (very convenient to calculate)



Something to think about

e Given the EVD, A =UXUT,
what can you say about the sequence zg, Axg, A%z, ... in terms of the eigen
values of A.
(Hint: You should arrive at the same conclusion we saw earlier)




Theorem (one more important property of eigenvectors)

If A is a square symmetric N x N matrix, then the solution to the following
optimization problem is given by the eigenvector corresponding to the largest
eigenvalue of A.

max z! Ax
T

st |zl =1

and the solution to
min 27 Ax
T

stz =1

is given by the eigenvector corresponding to the smallest eigenvalue of A.
Proof: Next slide.
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o This is a constrained optimization problem that can be solved using Lagrange
Multipliers:

L=aTAz - \azTz-1)

8—L:21435—)\(2315):0:> Az = Mz
Ox

@ Hence x must be an eigenvector of A with eigenvalue A.
e Multiplying by «7T:

T Az = XaTx = \(since 272 = 1)

o Therefore, the critical points of this constrained problem are the eigenvalues of

A.

@ The maximum value is the largest eigenvalue, while the minimum value is the
smallest eigenvalue.
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o The eigenvectors corresponding to different eigenvalues are linearly
independent.

o The eigenvectors of a square symmetric matrix are orthogonal.
o The eigenvectors of a square symmetric matrix can thus form a convenient basis.

e We will put all of this to use.




